Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo (West Sea Fisheries Research Institute, NFRDI) ;
  • Chung, Chang-Soo (Ocean Climate and Environment Research Division, KORDI) ;
  • Lee, Sang-Hee (West Sea Fisheries Research Institute, NFRDI) ;
  • Hong, Gi-Hoon (Ocean Climate and Environment Research Division, KORDI) ;
  • Kirn, Suk-Hyun (Ocean Climate and Environment Research Division, KORDI) ;
  • Park, Soung-Yun (West Sea Fisheries Research Institute, NFRDI) ;
  • Yoon, Seong-Jin (West Sea Fisheries Research Institute, NFRDI) ;
  • Lee!, Seung-Min (West Sea Fisheries Research Institute, NFRDI)
  • 발행 : 2005.06.30

초록

Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

키워드

참고문헌

  1. Amoros, I., R. Cannon, H. Garelick, J.L. Alonso, and J.M. Carrasco. 2000. An assessment of the toxicity of some pesticides and their metabolites affecting a natural aquatic environment using the Microtox system. Water Sci. Technol., 42(1-2), 19-24
  2. Ankley, G.T., R.A. Hoke, J.P. Giesy, and P.V. Winger. 1989. Evaluation of the toxicity of marine sediments and dredge spoils with the Microtox bioassay. Chemosphere, 18(9-10), 2069-20754 https://doi.org/10.1016/0045-6535(89)90488-8
  3. APHA, AWWA, and WEF. 1985. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC., USA
  4. ASTM. 1996. Standard guide for acute toxicity test with the rotifer Brachionus (E1440-91)
  5. AZUR Environmental. 2005. Microtox$\circledR$ rapid toxicity testing system. Available from WWW: [cited 2005-05-20].
  6. Bogaerts, P., J. Bohatier, and F. Bonnemoy. 2001. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure-activity relationships of xenobiotics: Comparison with the Microtox test. Ecotoxicol. Environ. Saf., 49(3), 293-301 https://doi.org/10.1006/eesa.2001.2074
  7. Boluda, R., J.F. Quintanilla, J.A. Bonilla, E. Saez, and M. Gamon. 2002. Application of the Microtox test and pollution indices to the study of water toxicity in the Albufera Natural Park (Valencia, Spain). Chemosphere, 46(2), 355-369 https://doi.org/10.1016/S0045-6535(01)00092-3
  8. Choi, K. and P.G. Meier. 2001. Toxicity evaluation of metal plating wastewater employing the Microtox assay: A comparison with cladocerans and fish. Environ. Toxicol., 16(2), 136-141 https://doi.org/10.1002/tox.1017
  9. Cleveland, L., E.E. Little, J.D. Petty, B.T. Johnson, J.A. Lebo, C.E. Orazio, J. Dionne, and A. Crockett. 1997. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, Microtox, Mutatox and semipermeable membrane devices (SPMDs). Mar. Poll. Bull., 34(3), 194-202 https://doi.org/10.1016/S0025-326X(96)00088-4
  10. Costello, M.J and P. Read. 1994. Toxicity of sewage sludge to marine organisms: A review. Mar. Environ. Res., 37(1), 23-46 https://doi.org/10.1016/0141-1136(94)90061-2
  11. Cotou, E., E. Papathanassiou, and C. Tsangaris. 2002. Assessing the quality of marine coastal environments: Comparison of scope for growth and Microtox bioassay results of pollution gradient areas in eastern Mediterranean (Greece). Environ. Poll., 119(2), 141-149 https://doi.org/10.1016/S0269-7491(01)00337-2
  12. Del Valls, T.A., L.M. Lubian, J.M. Forja, and A. Gomez-Parra. 1997. Comparative ecotoxicity of interstitial waters in littoral ecosystems using Microtox and the rotifer Brachionus plicatilis. Environ. Toxicol. Chem., 16(11), 2323-2332 https://doi.org/10.1897/1551-5028(1997)016<2323:CEOIWI>2.3.CO;2
  13. Doherty, F.G. 2001. A review of Microtox registered toxicity test system for assessing the toxicity of sediments and soils. Water Qual. Res. J. Can., 36(3), 475-518
  14. Fielder, D.S., G.J. Purser, and S.C. Battaglene, 2000. Effect of rapid changes in temperature and salinity on availability of the rotifers Brachionus rotundiformis and Brachionus plicatilis. Aquaculture, 189, 85-99 https://doi.org/10.1016/S0044-8486(00)00369-0
  15. Fukusho, K. 1983. Present status and problems in culture of the rotifer Brachionus plicatilis for fry production of marine fishes in Japan. In: Advances and Perspectives in Aquaculture. Proceedings of a Symposium, ed. by H.R. Fuentes, J.G. Castillo, and L.H. Disalvo. Universidad del Norte, Coquimbo, Chile
  16. Gaggi, C., G. Sbrilli, A.M. Hasab El Naby, M. Bucci, M. Duccini, and E. Bacci. 1995. Toxicity and hazard ranking of s-triazine herbicide using Microtox, two green algal species and a marine crustacean. Environ. Toxicol. Chem., 14(6), 1065-1069 https://doi.org/10.1897/1552-8618(1995)14[1065:TAHROS]2.0.CO;2
  17. Gaelli, R., H.W. Rich, and R. Scholtz. 1994. Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquat. Toxicol., 30(3), 259-269 https://doi.org/10.1016/0166-445X(94)90063-9
  18. Guerra, R. 2001. Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere, 44, 1737-1747 https://doi.org/10.1016/S0045-6535(00)00562-2
  19. Hur, S.B. and H.G. Park. 1996a. Size and resting egg formation of Korean rotifer, Brachionus plicatilis and B. calyciflorus. J. Aquacult., 9(3), 187-194
  20. Hur, S.B. and H.G. Park. 1996b. Mass production of resting egg of Korean rotifer, Brachionus plicatilis (L and S-type). J. Aquacult., 9(4), 345-351
  21. Komis, A. 1992. Improved production and utilization of the rotifer Brachionus plicatilis Muller in European sea bream (Sparus auratus Linnaeus) and sea bass (Dicentrarchus labrax Linnaeus) larviculture. Ph.D. thesis, Univ. of Ghent, Belgium
  22. Korunuma, K. and K. Fukusho. 1987. Rearing of marine fish larvae in Japan. IDRC, Ottawa. 109 p
  23. MOMAF. 1998. Standard methods for marine environmental analysis. Ministry of Maritime Affairs and Fisheries, Seoul, Korea. 317 p
  24. MOMAF. 2002. Studies on inventories and a sustainable use of tidal flats in Korea. Ministry of Maritime Affairs and Fisheries, Seoul, Korea. 885 p
  25. MOMAF. 2004. Development of waste assessment framework on the sewage sludge for ocean disposal. Ministry of Maritime Affairs and Fisheries, Seoul, Korea. 382 p
  26. MOMAF. 2005. Establishment of integrative management system for ocean dumping. Ministry of Maritime Affairs and Fisheries, Seoul, Korea. 1057 p
  27. Nogrady, T., R.I. Wallace, and T.W. Snell. 1993. Rotifera, Vol. I. Biology, Ecology and Systematics. SPB Academica Publishing, Hague, Netherlands
  28. Oanh, N.T.K. and B.E. Bengtsson. 1995. Toxicity to Microtox, micro-algae and duckweed of effluents from the Bai Bang Paper Company (Bapaco), a Vietnamese bleached kraft pulp and paper mill. Environ. Pollut., 90(3), 391-399 https://doi.org/10.1016/0269-7491(95)00008-F
  29. Pardos, M., C. Benninghoff, C. Gueguen, R.L. Thomas, J. Dobrowolski, and J. Dominik. 2000. Suspended matter waterelutriate toxicity from water and waste water in Cracow (Poland) evaluated with Microtox and Selenastrum capricornutum assays. Lakes Reserv. Res. Manage., 5(2), 67-73 https://doi.org/10.1046/j.1440-1770.2000.00098.x
  30. Park, H.G. and S.B. Hur. 1996a. Production and hatching rate of resting egg of Korean rotifer, Brachionus plicatilis (S-type) with different diets. J. Aquacult., 9(4), 329-337
  31. Park, H.G. and S.B. Hur. 1996b. Effect of temperature and salinity on production of resting egg in Korean rotifer, Brachionus plicatilis (L and S-type). J. Aquacult., 9(4), 321-327
  32. Park, H.G. and S.B. Hur. 1996c. Effect of temperature, salinity and preservation method on hatching rate of resting egg of Korean rotifer, Brachionus plicatilis (S-type). J. Aquacult., 9(4), 339-344
  33. Park, H.G., S.M. Lee, and S.B. Hur. 1999. Dietary value of neonates from rotifer, Brachionus plicatilis and B. rotundiformis resting eggs for flounder and parrot fish larvae. J. Aquacult., 12(1), 31-38
  34. Perrez, S., M. Farre, M.J. Garcia, and D. Barcelo. 2001. Occurrence of polycyclic hydrocarbons in sewage sludge and their contribution to its toxicity in the ToxAlert$\circledR$100 bioassay. Chemosphere, 45, 705-712 https://doi.org/10.1016/S0045-6535(01)00152-7
  35. Preston, B.L., T.W. Snell, T.L. Robertson, and B.J. Dingmann. 2000. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disrupters. Environ. Toxicol. Chem., 19, 2923-2928 https://doi.org/10.1897/1551-5028(2000)019<2923:UOFRBC>2.0.CO;2
  36. Preston, B.L. and T.W. Snell. 2001a. Full life-cycle toxicity assessment using rotifer resting egg production: Implications for ecological risk assessment. Environ. Poll., 114, 399-406 https://doi.org/10.1016/S0269-7491(00)00232-3
  37. Preston, B.L. and T.W. Snell. 2001b. Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: A modeling approach. Aquat. Toxicol., 52, 87-90 https://doi.org/10.1016/S0166-445X(00)00143-0
  38. Robinson, R. S. 1988. Assessment of methods for evaluating the treatment of sewage and the effects of industrial discharges. Toxic. Assess., 3, 17-31
  39. SDI. 2002. Microtox reference materials. Strategic Diagnostics Inc., USA. 37 p
  40. Scheers, E.M., C. Van der Wielen, and P.J. Dierickx. 2002. Toxicological evaluation of waste-water samples to appropriately sensitized cultured fathead minnow cells compared with the Microtox assay. Bull. Environ. Contam. Toxicol., 68(2), 253-260
  41. Snell, T.W. and G. Persoone. 1989. Acute toxicity bioassays using rotifers, I. A test for brackish and marine environments with Brachionus plicatilis. Aquat. Toxicol., 14, 65-80 https://doi.org/10.1016/0166-445X(89)90055-6
  42. Sweet, L.I. and P.G. Meier. 1997. Lethal and sublethal effects of azulene and lingifolene to Microtox, Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas. Bull. Environ. Contam. Toxicol., 58(2), 268-274 https://doi.org/10.1007/s001289900330
  43. Wallace, R.L. and T.W. Snell. 1991. Rotifera. In: Ecology and classification of North American Freshwater Invertebrates, ed. by J.H. Thorp and A.P. Covich. Academic Press, New York