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Abstract — An accurate particle tracking method for a finite
difference method model is developed using a constant acceleration
method. Being assumed constant temporal and spatial gradients,
the new method permits temporal-spatial variability of particle
velocity. Test results in a solid rotating flow show that the new
method has second-order accuracy. The performance of the new
method is compared with that of other methods; the first-order
Euler forward method, and the second-order Euler predictor-
corrector method. The new method is the most efficient method
among the three. It is more accurate and efficient than the other
two.
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1. Introduction

Particle tracking methods are practically used to track a
drifting motion in a numerical model. It is applicable to
determine Lagrangian trajectories or residual currents in
tidal models (Foreman et al. 1992; Cheng and Casulli
1982). Coupled with a random-walk motion, the particle
method is an efficient tool for a transport-dispersion study
in coastal areas (Dimou and Adams 1993; Al-Rabeh and
Gunay 1992; Suh 1998). Random walk particle tracking
methods have been popularly applied to the simulation of
groundwater flow and pollution (Hassan er al. 2001; Abulaban
and Nieber 2000). It is also a practical application to predict
a drifting and suspending object trajectory or an oil spill
dispersion (Bennett and Clites 1987). Usually, particle
displacement is calculated by linear- or bilinear- interpolated
constant velocity in most cases. Through this method,
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employing constant tracking velocity, the calculation
accuracy can be controlled by the tracking time interval
(Bensabat et al. 2000). In the case of the Euler forward
method, the first order accuracy, the tracking velocity is
determined at the starting position. It is simple and easy,
but there can be significant calculation errors when there
is a strong variability in the current field. In the Euler
predictor-corrector method, the second order method, the
particle velocity is determined at the center between the
starting and finishing position calculated by the Euler
forward method. In the iterative method, particle velocity
is determined by conversed velocity from iteration of the
Euler predictor-corrector steps. In the fourth order, the
Runge-Kutta method, the particle velocity is evaluated
four times in terms of the tracking step. This method is
very accurate but highly time consuming.

In this study, we propose a new second-order method.
In this method, the particle displacement is determined by
the initial velocity at the starting position as well as the
constant acceleration. This method is similar to that of
Bennett and Clites (1987), where the spatial gradient is
considered constant. Bennett and Clites (1987) applied
the particle tracking to predict oil spill dispersion
accompanied by a steady current field. The new method
is applicable to the unsteady current field. We develop the
algorithm for the finite difference method model and
analyze the accuracy and efficiency of the method in the
artificial field.

2. Methods

Assume that we have obtained the non-uniform unsteady
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velocity field calculated using a numerical model. In a
2-dimensional x-y plane, the velocity is situated on a
spatial grid point with a discrete temporal interval of
simulation time step. The particle velocity for position R
at time 7 can be determined by linear interpolation in time
(Appendix A).

. > >
V = u(R(t), )i +v(R(1), t)j )

> 2 > >
where, R=x{-+yj , i and j are unit vectors, u and v are

velocity components of x and y direction, respectively.

The particle’s displacement during one humerical simulation
time step (7, < ¢ < 7,) can be expressed as the integration
of particle velocity.

R, = R+ J] V(R(t), 1)dt )

where, R, and R, are the particle’s position vectors at time
T, and T,, respectively.

One simulation time step can be divided into several
tracking time increments to reduce the calculation error
(Bensabat er al. 2000).

R2:R1+iArj:Rl+i.[’j V(R,l‘)dt (3)
J=1 =1t

where, =iAt + T, i=0,...N, At = (T-T)IN, AH=Axi +Ax] ) is
the displacement of particles during an increment, N is
the tracking increment number.

Equation (3) is nonlinear when particle velocity is
unsteady and non-uniform (Bensabat ef al. 2000). Linearization
is required to solve the Equation (3). Generally, a medn
tracking velocity 1s assumed in many methods. Particle
velocity is considered constant in each time increment:

Ar, = VAL “4)

In the Euler forward method, the mean tracking velocity is
resumed as velocity at the location of the starting point

(-
T/._f = V(rsmr/, rjq/z) = const (5)

where, #,_,, denotes mid time of the increment.

However, in the Euler forward method, first order accuracy
has resulted in relatively large calculation errors when
there are significant spatial-temporal variations in the
velocity field. In the Euler predictor-corrector method,
second order accuracy, mean tracking velocity is resumed
as average velocity at the starting point and trial end point
calculated by the Euler forward method (predictor step).
The new end position of the particle is predicted using the
corrected velocity (corrector step).

I_/j = {V(rxlarla tj‘]/l) + V(réﬂll’ z_l"-l/z)} /2 = COHSI (6)

where, r,, is the trial end position calculated at the
predictor step. '

In this study, we assume a constant acceleration to
solve the equation (3). When a particle moves with a
constant acceleration, the displacement during a tracking
time increment can be determined by initial velocity and
constant acceleration as follows:

APy = V(Faas )AL+ %aAtz (7)

where, V(r...,t_.) is the initial velocity at the starting
position and time, a is the constant acceleration vector in
the tracking time increment.

The accuracy of the method is closely correlated to
defining the acceleration. The acceleration, the time
derivative of velocity, can be decomposed into local and
convective accelerations on the 2-dimensional x-y plane
as followst

av
oy

~

oV, _or, .
a= 8t+uax4v ®)

Three derivative terms in Equation (8) are determined
as linear velocity gradients (Appendix B.). We assume
that three gradient terms are constant in a tracking time
increment. The unknown mean advective velocities (, v)
are considered as the displacement per unit time. Then
Equation (8) can be rewritten as follows:

EE
a=adi+adyj C)
© _ Ax Ay

= u+ 2y + 2y
o = Ay Ay (10)
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g = v,+i—);vx+%v}. (11)

Here, superscript indicates the vector component and the
subscript indicates the derivative.

With Equations (10) and (11) Equation (7) can be reformed
as linear equations as follows:

21( A A )
X f+ = 1
A Uy At u,~ tu tu (12)
- R l( Ay )
= f + = v 1
Ay VoAt v, + t v (13)

where, u, and v, are initial velocities of x and y direction,
respectively.

Without time gradient terms Equations (12) and (13)
are similar with the second-order method of Bennett and
Clites (1987). They derived the formulas from Taylor’s
series expansion and are applied on a steady state condition.
For unsteady conditions, the time gradient terms can work as

a correction of time variations during a time increment.
Linear Equations (12) and (13) and simultaneous equations
of Ar and Ay can be rewritten as follows:

(1 —Atu>Ax~

At =( +41) 14
> 2uy Ay Uy 2Z/I,Af ( )

At At _ At
T Ax + (1 - —2-v',) Ay = (vo + —2—\1,) At (15

Equations (14) and (15) can be solved using a simple
matrix inversion algorithm.

3. Test Results

For the accuracy test, we use an artificial flow field in
the manner of a C-grid system. The velocity components
of x and y are set on the left face and the lower face of a
rectangular cell, respectively. In the 40x40 grids domain,
the flow rotates around the center of the domain (Fig. 1).

0

40

Fig. 1. Domain and flow field for comparison of the three particle tracking methods. The flow rotates around the center of the domain
with a constant angular velocity of 1 cycle per 30 seconds. Initiaily, 10 particles are released on the dark solid circles.
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Fig. 2. Trajectories of 10 particles during | rotation cycle calculated by three particle trackihg methods; (a) The EF method, (b) EPC and

(¢) CA. The tracking increment number is 1 (N=1).

The grid interval of all cells is Im and the constant
angular velocity of the flow is 1 cycle per 30 seconds.
This means that if there is no error, a particle should
return to the initial position 30 second later. We compare
the accuracy of three particle-tracking methods: the Euler
forward method (EF), Euler predictor-corrector method
(EPC) and constant acceleration method (CA). For the
test simulation, we release 10 particles on initial positions
marked in Fig. 1. The simulation time step is fixed to 1

second and the interval for the tracking time increment
(Af) is controlled by the tracking increment number (N).
Figure 2 shows the trajectories of 10 particles estimated
by the three methods during a 30-second period, when the
tracking increment number is 1. End positions of all trajectories
do not exactly coincide with the initial positions. The
calculation error for each method can be evaluated by the
mismatch-distance between the initial and end positions.
The EF method has the largest error error (Figure 2a) and
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Fig. 3. Overlapped trajectories calculated by three particle tracking method.

CA method has the smallest (Figure 2¢). The error for the
EPC method is similar to that of the CA method (Figure
2b). In all these methods, the error of the outer trajectory
is larger than that of the inner trajectory because the
error is proportional to the particle velocity. Figure 3
shows the overlap of the largest trajectories in the three
methods. The trajectory of the EF method shows
outward drifting. On the contrary, the trajectories of the
CA and the EPC methods show almost constant radii.
The trajectory from the EPC method slightly leads exact
solution. However, the trajectory of the CA method is
slightly delayed. Differences in the error tendencies
were pointed out by Bennett and Clites (1987). The
first-order EF method is accompanied by amplitude and
phase errors. However, the “second-order trapezoidal
method” in their study (similar to the CA method in this
study) is accompanied only by a phase error. Figure 4
shows trajectories of the 10 particles as in Figure 2,
except that the tracking increment number is 3. All
results in Figure 4 show less significant errors than

those in Figure 2. The end positions of CA and EPC
methods are almost the initial positions. This means that
the calculation error is inversely related to the particle
tracking time interval. For a quantitative comparison,
the normalized calculation error is defined by the
distance rate between the total length of the trajectory
and the mismatch distance:

L 2 (v — 2
E}’ — ’\/(x:nl xend)L (ymr yend) (16)

where, L is the total length of a trajectory, (x,,, y,,) and
(x,.» V..,) are the initial and end positions, respectively.
The normalized error defined by Equation (16) is
independent on the particle velocity, but only dependent
on the method and tracking increment number. Figure 5
shows the variation of normalized errors according to the
tracking increment number. When the tracking increment
number is 1, the error involving the EF method is about
14 % and those of the EPC and the CA methods are
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Fig. 4. Trajectories of 10 particles during 1 rotation cycle calculated by three particle traéking methods; (a) The EF method, (b) EPC and

(¢) CA. The tracking increment number is 3 (N=3).

about 0.70 % and 0.35 %, respectively. In these three
methods, errors rapidly decrease as the tracking increment
number increases.

Figure 6 shows the accuracy of the three methods. If a
method is m"-order accuracy, error must be proportional
to the m"-power of the tracking time interval (Af);

Er = aAt” = a(%\TT)m a7

where, o is a constant number, AT is a constant simulation
time interval, N is a tracking increment number.
We take a log for both sides of the Equation (17);

logo(Er) = log,(aAT") — mlog,,(N) (18)

The slope m in the log scale denotes the accuracy of
a method. In Figure 6, the slope of the EF method is
about -1. This means the EF method is the first-order
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Fig. 5. Variation of normalized errors according to the tracking
increment number.
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Fig. 6. Comparison of normalized errors. The horizontal and
vertical axes are in log scale.

accuracy. On the other hand, the EPC and the CA
methods are the second-order accuracy and their slopes

Table 1. Summary of comparison results.

arrive at about -2. Table 1 shows the summary of
comparison results.

4. Conclusions and Discussions

The CA method is the most accurate particle tracking
method among the three methods and the EF method is
the most inaccurate. The computation time for the CA
method is about 114% of that for the EF method based
on our study. The computation time-cost of the CA
method is relatively smaller then that of the EPC
method (about 171% of that of the EF method) though
the algorithm of the EPC method is simpler than that of
the CA method. For the practical application, the
particle tracking method requires extra time-consuming
steps for the determination of the grid number, the
verification of landward over-shooting, for adding
random-walk motion, etc. Usually, the computation time
for those steps is longer than the computation time for
particle tracking itself. When the extra steps are reduced
for specific applications, the EPC method can be faster
than the CA method. If EF methods are applied to the
calculation of the Lagrangian residual in a tidal model,
it can cause significant errors. The EF method requires
much more time than the CA (or EPC) method to
maintain similar accuracy. Therefore, we can conclude
that the CA method is the most efficient method among
the three for practical applications. When one gives
much more weight to accuracy, the fourth-order Runge-
Kutta method can be used although it needs much more
time. For the test of the CA method, we assume the
flow field has been derived from a finite difference
method model and has introduced simple interpolation
algorithms of velocity gradients from the flow field. The
CA method is also applicable to a finite element method
model, when one has determined appropriate velocity
gradients from a nodal velocity field.

Method Er(x10%) Accuracy (m) Computation time rate
N=1 N=3 N=5 N=10
EF 135795 3702 2125 1028 -1.08 100 %
EPC 696 77 28 7 -2.00 171 %
CA 345 39 14 4 -2.00 114 %
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Appendix A. Linear interpolation scheme in time.

u

ul)----------
u@) - - - - - - - —

i‘l(Tl) """""

_u(@) (- +u(T) - (t-T)
u(t) = T.-T,

Appendix B. Bi-linear interpolation schemes in space for the
Equation (8).

Uy Uy,

Up U
u(x,y) =
(0 AAY; T uy Ax Ay + u AGAY, + iy, Ax, Ayy)
Ax - Ay
) - (e G
— (i — 2w YA + (U — Uy )AX,
u)'(x’ J’) Ax . A)}

Where, Ax = Ax,+Ax,, Ay = Ay, + Ay,.



