Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea

강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향

  • Mok, Jin-Sook (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Cho, Hye-Youn (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Hyun, Jung-Ho (Marine Microbiology Laboratory, Korea Ocean Research and Development Institute)
  • 목진숙 (한국해양연구원 해양생물자원연구본부) ;
  • 조혜연 (한국해양연구원 해양생물자원연구본부) ;
  • 현정호 (한국해양연구원 해양생물자원연구본부)
  • Published : 2005.02.28

Abstract

This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

본 연구에서는 강화도 남단 갯벌에서 혐기성 유기물 분해능과 황산염 환원력을 정량화하고 유기물 분해에 있어 황산염 환원의 상대적 중요성에 미치는 저서 동물의 잠재적 영향에 대해 토의하고자 하였다. 혐기성 유기물 분해능은 $26{\sim}85\;mmol\;C\;m^{-2}\;d^{-1}$비 범위로 조사되었고, 이를 강화도 남단의 갯벌 면적 (약 90 $km^2$)으로 환산하면 하루 동안 약 46 ton의 유기물이 분해되는 것이라 할 수 있다. 황산염 환원력은 $22.6{\sim}533.4\;nmol\;cm^{-3}\;d^{-1}$의 범위로 조사되었으며, 전체 혐기성 유기물 분해의 $31{\sim}129%$를 차지하는 것으로 나타났다. 이는 연구지역에서의 혐기성 유기물 분해가 황산염 환원에 의해 주도되고 있음을 의미한다. 한편, 10월에 혐기성 유기물 분해에서 황산염 환원이 차지하는 비중이 상대적으로 낮게 나타난 반면, 공극수 내 Fe(II)의 농도가 증가한 것으로 나타났다. 이러한 결과들은 대형 저서 동물 활동에 의해 Fe(II)의 재산화가 촉진됨으로써 공극수 내 Fe(III)의 공급이 원활해졌고, 그로 인해 유기물 분해과정에서 철 환원 작용이 황산염 환원 작용을 약화시켰음을 의미한다.

Keywords

References

  1. 고철환, 2001. 한국의 갯벌, 서울대학교 출판부, pp. 1073
  2. 우한준, 박장준, 이연구, 제종길, 최재웅, 2004. 한국 서해 강화갯벌의 퇴적물 특성. 한국습지학회지, 6: 167-178
  3. 우한준, 제종길, 2002. 강화 남부 갯벌의 퇴적환경 변화, Ocean and Polar Research, 24: 331-343 https://doi.org/10.4217/OPR.2002.24.4.331
  4. 해양수산부, 1998. 우리나라의 갯벌, pp. 28
  5. 현정호, 목진숙, 조혜연, 조병철, 최중기, 2004. 하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력. 한국습지학회, 6: 117-132
  6. 현정호, 이홍금, 권개경, 2003. 해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성. 한국해양학회지 바다, 8: 210-224
  7. 황청연, 조병철, 2005. 산소미세전극을 이용한 강화군과 인천 북항조간대 갯벌의 순광합성률 측정, 한국해양학회지 바다, in press
  8. Aller, R.C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology, 114: 331-345 https://doi.org/10.1016/0009-2541(94)90062-0
  9. Alongi, D.M., 1995. Decomposition and recycling of organic matter in muds of the Gulf of Papua, northern Coral Sea. Continental Shelf Research, 15: 1319-1337 https://doi.org/10.1016/0278-4343(94)00087-4
  10. Arnosti, C, B.B. Jorgensen, J. Sagemann, and B. Thamdrup, 1998. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar. Ecol. Prog. Ser., 165: 59-70 https://doi.org/10.3354/meps165059
  11. Bagarinao, T., 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptation in aquatic organisms. Aquatic Toxicology, 24: 21-62 https://doi.org/10.1016/0166-445X(92)90015-F
  12. Canfield, D.E., B. Thamdrup, and J.W. Hansen, 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta., 57: 3869-3883
  13. Capone, D.G. and R. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 33: 725-749 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  14. Dollar, S.J., S.V. Smith, S.M. Vink, S. Obrebski, and J.T. Hollibaugh, 1991. Annual cycle of benthic nutrient fluxes in Tomales Bay, California, and contribution of the benthos to total ecosystem metabolism. Mar. Ecol. Prog. Ser., 79: 115-125 https://doi.org/10.3354/meps079115
  15. Farias, L., L.A. Chuecas and M.A. Salamanca, 1996. Effect of coastal upwelling on nitrogen regeneration from sediments and ammonium supply to the water column in Conception Bay, Chile. Estuarine, Coastal and Shelf Science, 43: 137-155 https://doi.org/10.1006/ecss.1996.0062
  16. Fossing, H. and B.B. Jorgensen, 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem., 8: 205-222
  17. Giblin, A.E., C.S. Hopkinson and J. Tucker, 1997. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts, Estuaries, 20: 346-364 https://doi.org/10.2307/1352349
  18. Gribsholt B., J.E. Kostka, and E. Kristensen, 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. Ser., 259: 237-251 https://doi.org/10.3354/meps259237
  19. Gribsholt, B. and E. Kristensen, 2002. Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Mar. Ecol. Prog. Ser., 241: 71-87 https://doi.org/10.3354/meps241071
  20. Hall, P.O., and R.C. Aller, 1992. Rapid small-volume, flow injection analysis for $CO_{2}$ and $NH_{4^{+}}$ in marine and freshwaters, Limnol. Oceanogr, 37: 113-119
  21. Hansen, K and E. Kristensen, 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuarine, Coastal and Shelf Science, 45: 613-628 https://doi.org/10.1006/ecss.1996.0229
  22. Hansen, K and E. Kristensen., 1998. The impact of the polychaete Nereis diversicolor and enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolosm and nutrient dynamics in organic-poor and organic-rich sediment. J. Exp. Mar. Biol. Ecol., 231: 201-223 https://doi.org/10.1016/S0022-0981(98)00070-7
  23. Hansen, K, G.M. King and E. Kristensen, 1996. Impact of the softshell clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquat. Microb. Ecol. 10: 1815-194
  24. Heilskov, A.C. and M. Holmer, 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. J. Marine Science, 58: 427-434
  25. Holmer, M., 1996. Composition and fate of dissolved organic carbon derived from phytoplankton detritus in coastal marine sediments. Mar. Ecol. Prog. Ser., 141: 217-228 https://doi.org/10.3354/meps141217
  26. Isaksen, M.F., and K. Finster, 1996. Sulphate reduction in the rootzone of the seagrass Zostera noltii on the intertidal faits of a coastal lagoon(Arcachon, France). Mar. Ecol. Prog. Ser., 137: 187-194 https://doi.org/10.3354/meps137187
  27. Jahnke and Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements, Limnol. Oceanogr., 40: 436-441 https://doi.org/10.4319/lo.1995.40.2.0436
  28. Jorgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, 1. Measurement with radiotracer techniques, Geomicrobiol. J., 1: 11-28 https://doi.org/10.1080/01490457809377721
  29. Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature, 96: 643-645 https://doi.org/10.1038/096643a0
  30. Koretsky, C.M., C.M. Moore, K.L. Lowe, C, Meile, T.J. Dichristina and P. van Cappellen, 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA), Biogeochem., 64: 179-203 https://doi.org/10.1023/A:1024940132078
  31. Kostka, B. Thamdrup, R.N. Glud, D.E. Canfield, 1999. rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar. Ecol. Prog. Ser., 180: 7-21 https://doi.org/10.3354/meps180007
  32. Kostka, J.E., A. Roychoudhury, and P. Van Cappellen, 2002a. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediment., Biogeochem., 60: 49-76 https://doi.org/10.1023/A:1016525216426
  33. Kostka, J.E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton, and E. Kristensen, 2002b. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments, Limnol. Oceanogr.,47: 230-240 https://doi.org/10.4319/lo.2002.47.1.0230
  34. Kristensen E. and M. Holmer, 2001. Decomposition of plant materials in amrine sediment exposed to different electron acceptors ($O_{2}$ $NO_{3}^{-}$ and $SO_{4}^{2-}$), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta. 65: 419-433 https://doi.org/10.1016/S0016-7037(00)00532-9
  35. Kristensen, E. and K. Hansen 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147-168
  36. Kristensen, E., A.H. Devol, S.I. Ahmed, and S. Monawwar, 1992. Preliminary study of benthic metabolisms and sulfate reduction in a mangrove swamp of the Indus Delta, Pakistan. Mar. Ecol. Prog. Ser, 90: 287-297 https://doi.org/10.3354/meps090287
  37. Kristensen, E., F.O. Anderson, N. Holmboe, M. Holmer, and N. Thongtham, 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol. 22: 199-213 https://doi.org/10.3354/ame022199
  38. Marvin-DiPasquale M.C. and D.G. Capone, 1998. Benthic sulfate reduction along the Chesapeake Bay central channel. I. Spatial trends and controls. Mar. Ecol. Prog. Ser., 168: 213-28 https://doi.org/10.3354/meps168213
  39. Nedwell, D.B., T.H. Blackburn, and W.J. Wiebe, 1994. Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser, 110: 223-231 https://doi.org/10.3354/meps110223
  40. Nielsen O.I., E. Kristensen, and M. Holmer, 2003. Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat. Microb. Ecol. 33: 95-105 https://doi.org/10.3354/ame033095
  41. Parsons, T.R., Y. Maita, and C.M. Lalli, 1984. A mannual of chemical and biological methods for seawater analysis, Pergamon press, 173 pp
  42. Pomeroy, L.R, W.J. Wiebe, D. Deibel, R.J. Thompson, G.T. Rowe, and J.D. Pakulski, 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75: 143-159 https://doi.org/10.3354/meps075143
  43. Stookey, L.L., 1970. Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem. 42: 779-781 https://doi.org/10.1021/ac60289a016