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Some Modifications of MacCormark’s Methods
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ABSTRACT

MacCormack’s method is an explicit, second order finite difference scheme that is widely used in
the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy
violations under small discontinuity. This non-physical shock grows fast and eventually all the
meaningful information of the solution disappears. Some modifications of MacCormack’s methods
follow ideas of central schemes with an advantage of second order accuracy for space and conserve
the high order accuracy for time step also. Numerical results are shown to perform well for the
one—-dimensional Burgers’ equation and Euler equations gas dynamic.
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1. Introduction

MacCormack’s method for hyperbolic partial
differential equations was introduced in [8, 5]
and has been widely used in aerodynamic
applications. We consider the general form of
systems of conservation laws. Let @ be an open
subset of R™ and let F be a smooth function
from @ into R™. Then the general form of a
system of conservation laws in one dimen-

sional space is

g;‘ + M 0, (1.1)

for x=(%x1,%9,°", %, )ER™ >0 where
u=uw -, U, 1" and F(u)= i1z, o T

Here u is the vector of conserved variables,
and F=F(u) is the vector of fluxes and each
of its components f; is a function of u.

An equation of the form (1.1) is written in
conservation form and is called a set of con-
servation laws. We shall be concermned with
numerical solutions of hyperbolic conservation
laws (1.1).

MacCormack’s method, originally introduced
in [8] :

W = u'— 2; [Fuis) = f(u)]
ui“— ‘ ) f(“-il)] (1.2)
u'tt = —é—(u, +u )

This scheme is second-order accurate for space
and time without using Jacobian matrices or
Riemann solvers but it produces spurious oscil-
lations unless artificial viscosity is explicitly added.

2. Modifications of MacCormack’s method

Before deriving the modifications of Mac-
Cormack's method we overview the pre-
dictor—-corrector form of the fully discrete meth-
ods of central schemes [2, 3, 6];

k1 At

U; =u; — 7—A—x-fi 2.1)

n 1 n n 1 ! !
U, +11 = ‘2‘[Ui + ]+ g[ui_uwll
. ) (2.2
At At - n+ —
‘E[f(_uiuz)—f(u.‘ )]

where the numerical flux derivatives

1 .
_ﬂfi = f(u)l‘l u:u(z,)+ O(A.'E)
and
Alz.u =u |u—u(z)+O(A1:)

The appropriate choice of approximate de-
rivatives guarantees that equation (2.2) is TVD
in the scalar case. For more detail, see [6].

For instance, one way to ensure TVD stabil-
ity for equation (2.2) is

(u, ) = minmod
), adu ) (2.3)

(adw

1
H “2—(ui+1 -

ro] =

and

(f);= minmod

4
(af ;L thi-t0,00r ) &Y
2

2

where o € [1,2] and Au,-+1/2= Uiy — Yy

and



min {z;} if z;> 0 for all j

min_B(zy, z,, -+ ) ={ max,{z;} if ;<0 for all j

0 otherwise

25)

We apply this scheme to MacCormack’s
method (1.2) then we have the following for—

mula:
1w, . s L/ _ .
U; =?(u1 +U,'+1)+§(ui_ui+l)

At n n
__A_z'[f(qu )—f(u)]

* * 1 * * 1_ * ’ * 1
u; = ?(ui—l+ui )+§(ui—1 - U

- %ﬁ? [f(u:)_f(ui*—l)]

ultl = %— (u + u” ) (2.6)

with (2.3) and equation (2.4).

3. Numerical results

In this section we present the results of our
numerical experiments for the 1D Burgers'
equation with uniform grids. Also we compute
the Euler equations and compare the results
with exact solutions.

Example 1.(Burgers’ equation) We consider
the entropy of a scalar conservation law with a
linear source term [1].

w+f(u), =u, (3.1

for u(z,0) =4 (z) € L'(R), and
z,u € R, >0, where the flux is given by the

convex power law
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1
flu) = 5u®, (3.2)
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(Figure 1) MacCormack’s Scheme (1.2), * : Numerical, - :
exact, ; A non—physical shock emerges from the
sign—changing point and finally destroys the
computed solution completely
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(Figure 2) Modification of MacCormack’s Scheme (2.5),
= ¢ Numerical, - : exact

Now we examine the properties of Mac-
Cormack’s method from numerical experi-
ments. In figure 1 exact and computed sol-
utions to the reaction-convection equation (1.2)
are given. In the figure at time t=4 one can

observe a small discontinuity that violates the
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entropy condition. However when we apply the
modified MacCormack’s method (25) to this
equation we can fix entropy violations and os—

cillations at the shock (Figure 2).

Example 2.(1-D Euler equations of gas dy—
namics) We solve the 1-D Euler system

U | 8 ~
W—er—(F(U))—O (3.3)
with
(P [ pu
U=ipu , F(U)=| pu+p |,
\E) uw(E+p)l
2
p=(v—1)(E—-E). (3.4)

with initial data (g, w p)=(1.0,0.0,1.0} if
£<0.5, (p,,u,p,)=(0.125,0.0,1.0) if z>05

which are two sets of Riemann data pro-—
posed by Sod in {4].

PRESSURE DENSITY
1
1
08
08
0.6
0.6
0.4
0.4
0.2
0.2
[}
02 04 06 08 1 02 04 08 08 1
VELOCITY TEMPERATURE
1 1.2
0.8 1.1
0.6 1
0.4 0.9
0.2 08
a7

02 04 06 08 1 g2 04 06 08 1

(Figure3) Modification of MacCormack’s Scheme (2.5),
+ : Numerical. - : exact. at t=0.1644

Even though the original MacCormark’s
method is second-order accurate it produces
spurious oscillations and blows up without add-
ing artificial viscosity explicitly. In figure 3 we
shows results of the modified MacCormark's
scheme for Sod’s problem, in comparison to the
corresponding exact solutions at t=0.1644 |

4. Conclusions

In this paper, we have presented a modified
MacCormack’s method to solve the 1-D hyper—-
bolic partial differential equations. To general-
ize this method to the nonlinear 2-D hyperbolic
partial differential equations, more work is

needed and this is left for future research.
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