Improvement of Emulsion Stability of Food Proteins by Microbial Transglutaminase

미생물유래 transglutaminase를 이용한 식품단백질의 유화안정성 향상에 관한 연구

  • Lee, Deuk-Sik (Department of Food Service Industry, Donghae University)
  • 이득식 (동해대학교 외식산업학과)
  • Published : 2005.04.30

Abstract

To improve functional properties of food proteins, homologous or heterologous ${\beta}-casein$ and 11S globulin(glycinin) from animal and vegetable proteins, respectively, were bio-hybridized using transglutaminase(MTGase). Susceptibility was confirmed by SDS-PAGE, particle size analyzed, and emulsion stability tested using Reddy and Fogler method, To determine how bio-hybridized protein influences emulsion stability, protein bound on oil droplet was investigated using Scanning Electron Microscopy (SEM). formation of bio-hybridized protein band was detected among homologous and heterologous proteins, with heterologous protein forming weak band in oligomer form. Homologous ${\beta}-casein$ protein showed high emulsion stability, while homologous glycinin showed almost no stability. Stability of heterologous ${\beta}-casein$ and glycinin protein was higher than that of glycinin. SEM photographs showed even distribution of bio-hybridized proteins on oil droplet improved stability.

미생물유래의 중합화효소(microbial transglutaminase, MTGase)를 이용하면 식품 단백질의 기능특성을 향상시키는 것이 가능하다. 본 연구에서는 MTGase를 이용, 동물성 단백질인 ${\beta}$-casein 및 식물성 단백질인 11S globulin의 동종 혹은 이종간을 bio-hybrid시킴으로써 단백질의 기능특성을 향상시키고자 하였다. 즉, SDS-PAGE에 의한 susceptibility 확인, particle size 분석 및 Reddy and Foster 방법에 의한 유화안정성(emulsion stability) 실험, 그리고 유화안정성에 영향을 주는 bio-hybrid된 단백질이 어떤 형태로서 안정성에 영향을 미치는지 주사형 전자현미경(SEM)을 이용하여 유적(oil droplet)에 결합된 단백질을 고배율로 분석하였다. SDS-PAGE에 의해 동종 흑은 이종의 단백질간의 가교결합이 형성되었으며, 특히 이종간의 결합은 그 밴드가 약하게 형성되었으며 oligomer의 형태를 나타내었다. 또한 유화안정성은 동종간에서는 ${\beta}$-casein이 우수하였으며, glycinin은 안정성이 거의 없는 것으로 나타났다. 그러나, 두 단백질 이종간의 안정성은 glycinin보다 더 우수하였다. 전자현미경 사진에서는 유적에 bio-hybrid된 단백질이 고르게 분포될수록 안정성이 더 우수한 것으로 판단되었다.

Keywords

References

  1. Kato A, Nakamura S, Takasaki H, Maki, S. New functional properties of glycosylated lysozymes constructed by chemical and genetic modifications. pp. 243-256. In: Macromolecular Interactions in Food Technology. Parris N, Kato A, Creamer L, Pearce J (eds). ACS Symposium Series 650, American Chemical Society, USA (1996)
  2. Ibrahim HR, Kato A. Design of amphipathic lysozyme using chemical and genetic modifications to achieve optimal food functionality and diverse antimicrobial action. pp. 16-28. In: Food Proteins-Structure and Functionality. Schwenke KD, Mothes R (eds). VCH, New York, NY, USA (1993)
  3. Alexandre MC, Larre C, Viroben G, Popineau Y, Guegen J. Modification of a wheat gliadin by bovine plasma factor XIII. pp. 172-179. In: Food Proteins. Structure and Functionality. Shwenke KD, Mothes R (eds). VCH, Weinheim, Germany (1993)
  4. Damodaran S. Protein-stabilized foam and emulsions. pp 57 -110. In: Food Proteins and Their Applications. Damodaran S, Paraf A. (eds). Dekker, New York, NY, USA (1997)
  5. Ikura K, Kometani T, Sasaki R, Chiba H. Crosslinking of soybean 7S and 11S proteins by transglutaminase. Agric. Biol. Chem. 44: 2979-2984 (1980) https://doi.org/10.1271/bbb1961.44.2979
  6. Ikura K, Yoshikawa M, Sasaki R, Chiba H. Incorporation of amino acids into food proteins by trans glutaminase. Agric. Biol. Chem. 45: 2587-2592 (1981) https://doi.org/10.1271/bbb1961.45.2587
  7. Motoki M, Nio N. Crosslinking between different food proteins by transglutaminase. J. Food Sci. 48: 2587-2592 (1981)
  8. Nio N, Motoki M, Takinami K. Gelation mechanism of protein solution by trans glutaminase. Agric. Biol, Chem. 50: 851-855 (1986) https://doi.org/10.1271/bbb1961.50.851
  9. Traore F, Meunier JC. Cross-linking activity of placental F XIIIa on whey proteins and caseins. J. Agric. Food Chem. 40: 399-402 (1992) https://doi.org/10.1021/jf00015a007
  10. Folk JE, Chung SI. Molecular and catalytic properties of transglutaminase. Adv. Enzymol. 38: 109-191 (1973)
  11. Lee DS, Matsumoto S, Matsumura Y, Mori T. Identification of the ${\epsilon}$-(${\gamma}$-glutamyl)lysine cross-linking sites in a-lactalbumin polymerized by mammalian and microbial transglutaminases. J. Agric. Food Chem. 50: 7412-7419 (2002) https://doi.org/10.1021/jf020529a
  12. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M. Purification and characteristics of a novel trans glutaminase derived from Microorganisms. Agric. Biol. Chem. 53: 2613-2617 (1989) https://doi.org/10.1271/bbb1961.53.2613
  13. Faergemand M, Qtte J, Qvist KB. Enzymatic cross-linking of whey proteins by a $Ca^{2+}$-independent microbial transglutaminase from Streptomyces lydicus. Food Hydrocoll 11: 19-25 (1997) https://doi.org/10.1016/S0268-005X(97)80006-9
  14. Matsumura Y, Lee DS, Mori T. Molecular weight distributions of ${\alpha}$-lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydrocoll 14: 49-59 (2000) https://doi.org/10.1016/S0268-005X(99)00045-4
  15. Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsuura A. Polymerization of several proteins by $Ca^{2+}$-independent trans glutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2619-2623 (1989) https://doi.org/10.1271/bbb1961.53.2619
  16. Sakamoto H, Kumazawa Y, Motoki M. Strength of protein gels prepared with microbial transglutarninase related to reaction conditions. J. Food Sci. 59, 866-871 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb08146.x
  17. Kuraishi C, Sakamoto J, Soeda T. The usefulness of transglutarninase for food processing. pp 29-38. In: Biotechnology for Improved and Flavors. Kuraishi C, Soeda T (eds). American Chemical Society, Washington, DC, USA (1996)
  18. Kumazawa Y, Sakamoto H, Kawauiri H, Motoki M. Determiantion of ${\epsilon}$-(${\gamma}$-glutamyl)lysine in several fish eggs and muscle proteins. Fish. Sci. 62: 331-332 (1995)
  19. Motoki M, Seguro K. Transglutaminase and its use for food processing. Food Sci. Technol. 9: 204-210 (1998) https://doi.org/10.1016/S0924-2244(98)00038-7
  20. Sakamoto H, Yamazaki K, Kaga C, Yamamoto Y, Ito R, Kurosawa Y Strength enhancement by addition of microbial transglutaminase during chinese noodle processing. Nippon Shokuhin Kagaku Kogaku Kaishi 43: 598-602 (1996) https://doi.org/10.3136/nskkk.43.598
  21. Han XQ, Damodaran S. Thermodynamic compatibility of substrate proteins affects their cross-linking by transglutaminase. J. Agric. Food Chem. 44: 1211-1217 (1996) https://doi.org/10.1021/jf950569x
  22. Lee DS, Matsumoto S, Hayashi Y, Matsumura Y, Mori T. Differences in physical and structural properties of heat-induced gels from glycinins among soybean cultivars, Food Sci. Technol. Res. 8: 360-366 (2002) https://doi.org/10.3136/fstr.8.360
  23. Thanh VH, Okubo K, Shibasaki K. Isolation and characterization of the multiple 7S globulins of soybean proteins. Plant Physiol. 56: 19-22 (1975) https://doi.org/10.1104/pp.56.1.19
  24. Folk JE. Methods in Enzymology. Vol. 17A, pp. 889-894. Tabor H, Tabor CW (eds). Academic Press, New York, NY, USA (1970)
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 (1970) https://doi.org/10.1038/227680a0
  27. Reddy SR, Fogler HS. Emulsion stability: Determination from turbidity. J. Colloid Interface Sci. 79: 101-104 (1981) https://doi.org/10.1016/0021-9797(81)90052-7
  28. Lee DS. Studies on mechanism of polymerization of food proteins by transglutaminases from mammalian and microbial origins. PhD thesis, Kyoto University, Kyoto, Japan (1997)
  29. Liu M, Damodaran S. Effect of transglutarninase-catalyzed polymerization of ${\beta}$-casein on its emulsifying properties. J. Agric. Food Chem. 47: 1514-1519 (1999) https://doi.org/10.1021/jf981030c
  30. Liu M, Lee DS, Damodaran S. Emulsifying properties of acidic subunits of soy 11S globulin. J. Agric. Food Chem. 47: 4970-4975 (1999) https://doi.org/10.1021/jf9902200