Fermentation Characteristics of Low Salted Kochujang Prepared with Mixture of Sub-materials

부원료를 혼합 첨가한 저식염 고추장의 발효 특성

  • Kim, Dong-Han (Department of Food and Nutrition, Mokpo National University)
  • 김동한 (목포대학교 식품영양학 전공)
  • Published : 2005.06.30

Abstract

To reduce saft content of kochujang, various combinations of sub-materials such as ethanol mustard and chitosan were added to kochujang, and their effects on microbial characteristics, enzyme activities, and physicochemical characteristics of kochujang were investigated after 12 weeks of fermentation. Activities of ${\beta}$-amylase and pretense were low in ethanol-mustard-chitosan-added kochujang, whereas no significant difference was observed in ${\alpha$-amylase activity among all groups. Number of viable yeast cells decreased remarkably in mustard-added kochujang during late aging period, and anaerobic bacterial counts decreased in sub-material-added groups. Consistency of kochujang increased by addition of sub-materials, and oxidation-reduction potential was low in chitosan-added group. Mustard-chitosan-added kochujang showed lowest increase in total color difference(${\Dalta}E$) and decrease in water activity. PH of kochujang wns highest in mustard-chitosan-added kochujang, resulting in significantly increased titratable acidity. Addition of sub-material increased reducing sugar contents of kochujang, whereas ethanol production was significantly repressed in mustard-chitosan-added kochujang. Amino nitrogen content was Highest in mustard-chitosan-added kochujang during late aging period, whereas ammonia nitrogen content was lower in ethanol-mustard-added kochujang. Results of sensory evaluation indicated ethanol-mustard-added kochujang was more acceptable than other groups in taste and overall acceptability.

저식염 고추장을 제조하기 위하여 고추장의 소금농도를 9%에서 6%로 줄이고 알콜과 겨자, 키토산을 혼합첨가 하여 숙성중의 효소활성도와 미생물상 및 이화학적 특성을 비교하였다. 고추장의 ${\beta}$-amylase와 protease 활성은 알콜-겨자-키토산 혼합 첨가 고추장(EMC)에서 낮았으나 ${\alpha}$-amylase는 시험구간의 차이가 없었다. 고추장 숙성 후기의 효모수는 겨자의 혼합 첨가로 현저히 감소하였고 혐기성 세균수도 부원료의 첨가로 감소되었다. 고추장의 점조성은 부원료의 첨가로 증가되었으나 ORP는 키토산 첨가구에서 낮았다. 고추장의 색도는 알콜의 혼합 첨가로 숙성이 진행되면서 L, a, b 값 모두 저하되나 겨자-키토산 혼합 첨가(MC)로 증가되어 ${\Delta}E$의 변화가 적었다. 겨자-키토산 첨가 고추장은 숙성 중에 수분활성도의 저하는 적었으나, pH의 저하가 심하여 적정산도가 급격히 증가하였다. 고추장의 환원당은 부원료의 첨가로 증가하였으며, 알콜의 생성은 겨자-키토산 혼합 첨가로 현저하게 억제되었다. 고추장의 아미노태질소는 겨자-키토산 혼합 첨가로 증가되었으나 암모니아태 질소의 생성은 알콜-겨자 첨가구(EM)에서 낮았다. 고추장의 맛과 전체적인 기호도는 알콜-겨자를 혼합 첨가한 고추장에서 양호하여 저식염 고추장의 제조는 소금의 일부를 알코올과 겨자를 혼용하여 첨가하는 것이 효과적이었다.

Keywords

References

  1. Lee TS. Studies on the brewing of kochujang (red papper paste) by the addition of yeasts. J. Korean Agri. Chem. Soc. 22: 65-90 (1979)
  2. Cho HO, Kim JG, Lee HJ, Kang JH, Lee TS. Brewing method and composition of traditional kochujang (red pepper paste) in junrabook-do area. J. Korean Agric. Chem. Soc. 24: 21-28 (1981)
  3. Choi JY, Lee TS, Noh BS. Quality characteristics of the kochujang prepared with mixture of meju and koji during fermentation. Korean J. Food Sci. Technol. 32: 125-131 (2000)
  4. Oh HI, Shon SH, Kim JM. Physicochemical properties of kochujang prepared with Aspergillus oryzae, Bacillus licheniformis and Saccharomyces rouxii during fermentation. J. Korean Soc. Food Sci. Nutr. 29: 357-363 (2000)
  5. Lee KS, Kim DH. Trial manufacture of low-salted kochujang (red pepper soybean paste) by the addition of alcohol. Korean J. Food Sci. Technol. 17: 146-154(1985)
  6. Kwan DJ, Jung JW, Kim JH, Park JY, Yoo JY, Koo YJ, Chung KS. Studies on establishment of optimal aging time of Korean traditional kochujang. Agric. Chem. Biotech. 39: 127-133 (1996)
  7. Yeo YK, Kim ZU. Studies on the standardization of the processing conditional of Ko-Choo-Jang(red pepper paste). J. Korean Agric. Chem. Soc. 21: 16-21 (1978)
  8. Kim YS, Cha J, Jung SW, Park EJ, Kim JO. Changes of physico-chemical characteristics and development of new quality indices for industry-produced koji kochujang. Korean J. Food Sci. Technol. 26: 453-458 (1994)
  9. Moon TW, Kim ZU. Some chemical physical characteristics and acceptability of kochujang from various starch sources. J. Korean Agric. Chem. Soc. 31: 387-393 (1988)
  10. Shin DH, Kim DH, Choi U, Lim MS, An EY. Physicochemical characteristics of traditional kochujang prepared with various raw materials. Korean J. Food Sci. Technol. 29: 907-912 (1997)
  11. Kim YS. Studies on the changes in physicochemical characteristics and volatile flavor compounds of traditional kochujang during fermentation. PhD thesis, University of King Sejong, Seoul, Korea (1993)
  12. Jung SW, Kim YH, Koo MS, Shin DB. Changes in physicochemical properties of industry-type kochujang during storage. Korean J. Food Sci. Technol. 26: 403-410 (1994)
  13. Chun MS, Lee TS, Noh BS. Effect of gamma-irradiation on quality of kochujang during storage. Foods Biotechnol. 1: 117-122 (1992)
  14. Lee KS, Kim DH. Effect of sake cake on the quality of low salted kochujang. Korean J. Food Sci. Technol. 23: 109-115 (1991)
  15. Oh JY, Kim YS, Shin DH. Changes in physicochemical characteristics of low-salted kochujang with natural preservatives during fermentation. Korean J. Food Sci. Technol. 34: 835-841 (2002)
  16. Yamamoto Y, Higashi K, Yoshii H. Inhibitory activity of ethanol on food spoilage bacteria. Nippon Shokuhin Kogyo Gakkaishi 31: 531-535(1984) https://doi.org/10.3136/nskkk1962.31.8_531
  17. Kim DH, Lee JS. Effect of condiments on the physicochemical characteristics of traditional kochujang during fermentation. Korean J. Food Sci. Technol. 33: 353-360 (2001)
  18. Yun YS, Kim KS, Lee YN. Antibacterial and antifungal effect of chitosan. J. Chitin Chitosan 4: 8-14 (1999)
  19. Shin DH, Ahn EY, Kim YS, Oh JA. Fermentation characteristics of kochujang containing horseradish or mustard. Korean J. Food Sci. Technol. 32: 1350-1357 (2000)
  20. Kim DH, Kwon YM. Effect of storage conditions on the microbiological and physicochemical characteristics of traditional kochujang. Korean. J. Food. Sci. Technol. 33: 589-595 (2001)
  21. Kim DH, Yang SE. Fermentation characteristics of low salted kochujang prepared with sub-materials. Korean J. Food Sci. Technol. 36: 97-104 (2004)
  22. Official methods of miso analysis. Institute of Miso Technologists, Tokyo, Japan, pp. 1-34 (1968)
  23. Fuwa HA. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J. Biochem. 41: 583-588(1954) https://doi.org/10.1093/oxfordjournals.jbchem.a126476
  24. Anson ML. Estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-89 (1938) https://doi.org/10.1085/jgp.22.1.79
  25. SAS Institute, Inc. SAS User's Guide. Statistical Analysis System Institute, Cary, NC, USA (1992)
  26. Lee JM, Jang JH, Oh NS, Han MS. Bacterial distribution of kochujang. Korean J. Food Sci. Technol. 28: 260-266 (1996)
  27. Jay JM. Modern Food Microbiology, 6th ed. Aspen Publishers, Inc., Gaithersburg, MD, USA. pp. 45-47 (2000)
  28. Jung YC, Choi WJ, Oh NS, Han MS. Distribution and physiological characteristics of yeasts in traditional and commercial kochujang. Korean J. Food Sci. Technol. 28: 253-259 (1996)
  29. Cho HO, Park SA, Kim JG Effect of traditional and improved kochujang koji on the quality improvement of traditional kochujang. Korean J. Food Sci. Technol. 13: 319-327 (1981)