Antioxidative and Protective Effects of Ulmus davidiana var. japonica Extracts on Glutamate-Induced Cytotoxicity in PC 12 Cells

느릅나무 추출물의 항산화 효과 및 L-glutamate 유래 PC12 세포독성 보호효과

  • Choi, Won-Hee (Department of Food Function Research Division, Korea Food Research Institute) ;
  • Oh, Young-Sang (Department of Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Sung-Ran (Department of Food Function Research Division, Korea Food Research Institute) ;
  • Ahn, Ji-Yoon (Department of Food Function Research Division, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Department of Food Function Research Division, Korea Food Research Institute)
  • Published : 2005.06.30

Abstract

Antioxidative and protective effects of Ulmus davidiana var. japonica against oxidative damages induced by glutamate in PC 12 cells were investigated. Inhibitory activity against $FeSO_{4}-H_{2}O_{2}$-induced oxidative stress and DPPH radical-scavenging activity were detected in ethyl acetate and butanol fractions of ethanol extracts from stems and roots. Ethyl acetate and butanol fractions of ethanol extracts from roots significantly inhibited glutamate-induced cytotoxicity and reactive oxygen species in PC 12 cells. These results demonstrate ethyl acetate and butanol fractions of ethanol extracts of U. davidiana var. japonica have potent protective effect against glutamate-induced oxidative stress.

느릅나무 에탄올 추출물의 각 용매 분획물에 대한 항산화활성과 L-glutamate에 의하여 유도된 PC 12세포에 대한 세포 독성 및 세포 내 활성산소종(ROS)을 측정하였다. 느릅나무 수피의 에틸아세테이트 및 부탄올 분획과 근피의 에틸아세테이트 분획층은 흰쥐 뇌조직에서 $FeSO_{4}-H_{2}O_{2}$로 유도한 산화적 스트레스를 유의하게 억제하였으며 강한 fire radical 소거능을 나타내었다. 또한 glutamate에 의하여 PC 12 세포의 생존율이 억제되었고 세포내 ROS가 증가하였으며 이러한 ROS의 증가는 근피의 에틸아세테이트 및 부탄올 획분에 의하여 억제되었다. 따라서 느릅나무 근피의 에틸아세테이트 및 부탄올 획분은 PC 12 세포에서 glutamate로 유도된 세포내 ROS를 억제함으로써 세포의 독성을 보호한 것으로 사료되었다.

Keywords

References

  1. Ames BN, Shigenaga MK, Hagen TM. Oxidant, antioxidants, and the degenerative disease of aging. Proc. Natl. Acad. Sci. USA. 90:7915-7922(1993)
  2. Totter JR. Spontaneous cancer and its possible relationship to oxi-gen metabolism. Proc. Natl. Acad. Sci. USA 77: 1763-1767 (1980) https://doi.org/10.1073/pnas.77.4.1763
  3. Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256-1264 (1983) https://doi.org/10.1126/science.6351251
  4. Qian SY, Buettner GR. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radic. Biol. Med. 26: 1447-1456 (1999) https://doi.org/10.1016/S0891-5849(99)00002-7
  5. Wink DA, Nims RW, Saavedra JE, Utermahlen WE, Ford Jr. PC. The fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Proc. Natl. Acad. Sci. USA. 91:6604-6608(1994)
  6. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 6: 3338-3344 (1992) https://doi.org/10.1096/fasebj.6.15.1464368
  7. Choi DW. Excitotoxic cell death. J. Neurobiol. 23: 1261-1276 (1992) https://doi.org/10.1002/neu.480230915
  8. Shin MK, Clinical traditional herbalogy. Younglimsa, Seoul, Korea pp. 669-778(1997)
  9. Lee EB, Kim OK, Jung CS, Jung KH. The influence of methanol extract of Ulmus davidiana var japonica cortex on gastric erosion and ulcer and paw edema in rats. Korean. J. Pharmacol. 39: 671-675(1995)
  10. Hong ND, Rho YS, Kim NJ, Kim JS. A study on efficacy of ulmi cortex. Korean. J. Pharmacogn. 21: 217-222 (1990)
  11. Yang Y, Hyun JW, Lim KH, Kim HJ, Woo ER, Park J. Antineoplastic effect of extracts from traditional medical plants and various plants (III). Korean. J. Pharmacogn. 27: 105-110 (1996)
  12. Bae YS, Kim JK. Extractives of the bark of ash and elm as medical hardwood tree species. Mokjae Konhak. 28: 62-69 (2000)
  13. Lee MK, Sung SH, Lee HS, Cho JH, Kim YC. Lignan and neo-lignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res. 24: 198-201 (2001) https://doi.org/10.1007/BF02978256
  14. Jun CD, Pae HO, Kim YC, Jeong SJ, Yoo JC, Lee EJ, Choi BM, Chae SW, Park RK, Chung HT. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharm. 62:129-135 (1998) https://doi.org/10.1016/S0378-8741(98)00063-4
  15. Lee YJ, Han JP. Antioxidative activities and nitrite scavenging abilities of extracts from Ulmus davidiana. J. Korean Soc. Food Sci. Nutr. 29: 893-899 (2000)
  16. Kwon YM, Lee JH, Lee MW. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidantive activites. Korean. J. Pharmacogn. 33: 404-410 (2002)
  17. Ohkawa H. Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  18. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 26:1199-1200(1958)
  19. Yobimoto K, Matsumoto K, Huong N, Kasai R, Yamasaki K, Watanabe H. Suppressive effects of Vietnamese ginseng saponin and major component majonoside-R2 on psychological stress-induced enhancement of lipid peroxidation in the mouse. Phamacol. Biochem. Behavior 66: 661-665 (2000) https://doi.org/10.1016/S0091-3057(00)00257-4
  20. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem. Pharmacol. 57:199-208 (1999) https://doi.org/10.1016/S0006-2952(98)00296-2
  21. Huang X, Dai J, Fournier J, Ali AM, Zhang Q, Frenkel K. Ferrous ion autoxidation and its chelation in iron-loaded human liver $HepG_2$ cells. Free Rad. Biol. Med. 32: 84-92 (2002) https://doi.org/10.1016/S0891-5849(01)00770-5
  22. Lesnefsky EJ. Tissue iron overload and mechanisms of iron-catalyzed oxidative injury. Adv. Exp. Med. Biol. 366: 129-146 (1994)
  23. Naito M, Umegaki H, Iguchi A. Protective effects of probucol against glutamate-induced cytotoxicity in neuronal cell line PC 12.Neurosci. Lett. 186: 211-213 (1995) https://doi.org/10.1016/0304-3940(95)11321-M
  24. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11:465-469 https://doi.org/10.1016/0166-2236(88)90200-7
  25. Murphy TH, Malouf AT, Sastre A, Schnaar RL, Coyle JT. Calcium-dependent glutamate toxicity in a neuronal cell line. Brain Res. 444: 326-332 (1988)
  26. Bondy SC, Lee DK. Oxidative stress induced by glutamate receptor agonist. Brain Res. 610: 229-233 (1993) https://doi.org/10.1016/0006-8993(93)91405-H
  27. Seyfreid J, Evert BO, Rundfeldt C, Schulz JB, Kovar KA, Klock-gether T, Wullner U. Flupirtine and retigabine prevent L-glutamate toxicity in rat pheochromocytoma PC 12 cells. Eur. J. Pharmacol. 400: 155-166(2000) https://doi.org/10.1016/S0014-2999(00)00397-6
  28. King N, McGivan JD, Griffiths EJ, Halestrap AP, Suleiman MS. Glutamate loading protects freshly isolated and perfused adult cardiomyocytes against intracellular ROS generation. J. Mol. Cell. Cardio. 35: 975-984 (2003) https://doi.org/10.1016/S0022-2828(03)00182-2
  29. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Rad. Biol. Med. 27: 612-616 (1999) https://doi.org/10.1016/S0891-5849(99)00107-0