Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds

Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교

  • Yang, Ji-Yeon (Department of Food and Nutritional Sciences, Ewha Womans University) ;
  • Kim, Young-Suk (Department of Food and Nutritional Sciences, Ewha Womans University)
  • Published : 2005.10.31

Abstract

Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

각각의 황 함유 화합물의 표준곡선을 그렸을 때, linear range의 범위는 $10^2$부터 $10^4$까지의 범위를 보였다. Dimethyl trisulfide가 가장 작은 limit of detection(LOD) 값과 가장 넓은 linear range $(10^4)$를 보이는 반면, methional은 가장 큰 LOD 값과 가장 좁은 linear range$(10^2)$를 가졌다. 각 황 함유 화학물의 분자구조와 PFPD의 황 함유 화합물 분석 원칙에 영향을 받는 것으로 사료된다. 서로 다른 세 종류의 fiber를 사용시, 미세 고체상 추출법(SPME)을 사용했을 때, CAR/PDMS fiber는 가장 좋은 추출 효율을 보였고, 반대로 PDMS/DVB fiber는 가장 낮은 효율을 나타내었다. SPME 방법을 사용하면, 시료에 포함되어 있는 6개의 황 함유 화합물들 중, 최대 5개까지 분석이 가능하였다. 그러나 본 실험에서 사용하지 않은 황 함유 화합물들도 다수 동정 되었는데, 이렇게 추출과정 중 artifacts로 생성된 황 함유 화합물들은 분석 시 오차를 작용할 수 있다. 고정상 기체추출법(SH)은 SPME와 비교했을 때 더 적은 수의 황 함유 화합물을 감지해냈다. SPME와 비교 시 SH의 추출 효율은 낮았지만, artifact로 생성되는 화합물의 수는 적었다.

Keywords

References

  1. Shahidi F, Rubin LJ, D'Souza LA. Meat f1avor volatiles: a review of the composition. techniques of analysis, and sensory evaluation. CRC Crit. Rev. Food Sci. Nutr. 24: 141-243 (1986) https://doi.org/10.1080/10408398609527435
  2. Mussinan CJ, Keelan ME. Sulfur compounds in foods. pp.1-6. In: Sulfur Compounds in Foods ACS Sym. Ser. 564. Mussinam CJ, Keelan ME (eds). American Chemical Society, Washington DC, MD, USA (1994)
  3. Eriksson C. Maillard reactions in food: chemical, physiological and technological aspects. pp. 1-6. In: Progress in Food and Nutrition Science Vol. 5. Erisson C (ed). Permagon Press, Oxford, NY, USA (1981)
  4. Chin HW, Robert GL. A modulation of volatile sulfur compounds in cruciferous vegetable. pp. 90-104. In: Sulfur Compounds in Foods ACS Sym. Ser. 564. Mussinam C.J, Keelan ME (eds). American Chemical Society, Washington DC, MD, USA (1994)
  5. Mestres M, Busto O, Guasch J. Chromatographic analysis of volatile sulphur compounds in wines using the static heads pace technique with flame photometric detection. J. Chromatogr. A. 773: 261-269 (1997) https://doi.org/10.1016/S0021-9673(97)00188-X
  6. Russell LR. Analytical methods to determine volatile sulfur compounds in food and beverage. pp. 2-24. In: Heteroatomic Aroma Compounds. Reineccius GA (ed). American Chemical Sociey, Washington DC, USA (2002)
  7. Mistry BS, Reineccius GA, Jasper BL. Comparison of gas chromatographic detectors for analysis of volatile sulfur compounds in foods. pp. 8-12. In: Sulfur Compounds in Foods ACS Sym. Ser. 564. Mussinam CJ, Keelan ME (eds). American Chemical Society, Washington DC, MD, USA (1994)
  8. Eckert SE, Hawthorn SB, Miler DJ. Comparison of commercially available atomic emission and chemiluminescence detectors for sulfur-selective gas chromatographic detection. J. Chromatogr. 591: 313-323 (1992) https://doi.org/10.1016/0021-9673(92)80249-T
  9. Jacobsen JA, Stuer-Lauridsen F, Pritzl G. Organotin speciation in environmental samples by capillary gas chromatography and pulsed photometric detection(PFPD). Appl. Organomet. Chem. 11: 737-741 (1997) https://doi.org/10.1002/(SICI)1099-0739(199709)11:9<737::AID-AOC640>3.0.CO;2-L
  10. Cheskis S, Atar E, Amirav A. Pulsed-flame photometer: a novel gas chromatography detector. J. Anal. Chem. 65: 593-555 (1993)
  11. Amirav A, Jign H. Pulsed flame photometer detector for gas chromatography. J. Anal. Chem. 67: 3305-3318 (1995) https://doi.org/10.1021/ac00114a030
  12. Hill PG, Smith RM. Determination of sulfur compounds in heer using headspace solid-phase microextraction and gas chromatographic analysis with pulsed flame photometric detection. J. Chromatogr. 872: 203-213 (2000) https://doi.org/10.1016/S0021-9673(99)01307-2
  13. Fan X, Sommers CH, Thyer DW, Lehotay SJ. Volatile sulfur compounds in irradiated precooked turkey breast analyzed with pulsed flame photometric detection. J. Agric. Food Chem. 50: 4257-4261 (2002) https://doi.org/10.1021/jf020158y
  14. Munoz JA, Gonzalez EF, Ayuso LE, Casado AG, Rodriguez LC. A new approach to qualitative analysis of organophosphorus pesticide residues in cucumber using a double gas chromatographic system: GC-pulsed-flame photometry and retention time locking GC-mass spectrometry. Talanta 60: 433-447 (2003) https://doi.org/10.1016/S0039-9140(03)00108-5
  15. Kalontarov I., Jing H, Amirav A, Cheskis S. Mechanism of sulfur emission quenching in flame photometric detectors. J. Chromatogr. A. 696: 245-256 (1995) https://doi.org/10.1016/0021-9673(94)01273-H
  16. Keith LH, Crummett W, Deegan J, Libby RA, Taylor JK, Wentler G. Principles of environmental analysis. Anal. Chem. 55: 2210-2218 (1983) https://doi.org/10.1021/ac00264a003
  17. Sergey C, Eitan A, Aviv A. Pulsed-flame photometer: A novel gas chromatography detector. Anal. Chem. 65: 539-555 (1993) https://doi.org/10.1021/ac00053a010
  18. Rowe D. More fizz for your buck: high-impact aroma chemicals. J. Perf. Flav. 25: 1-19 (2000)
  19. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A. 880: 35-62 (2000) https://doi.org/10.1016/S0021-9673(00)00309-5
  20. Nielsen AT, Jonsson S. Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase rnicroextraction. J. Chromatogr. A. 963: 57-64 (2002) https://doi.org/10.1016/S0021-9673(02)00556-3
  21. Shirey RE. SPME fibers and selection for specific applications. pp. 59-110. In: Solid Phase Microextraction. Wercinski, SAS. (ed). Marcel Dekker, Inc., New York, NY, USA (1999)
  22. Roberts DO, Pollien P, Milo C. Solid-phase microextraction method development for headspace analysis of volatile flavor compounds. J. Agric. Food Chem. 48: 2430-2437 (2000) https://doi.org/10.1021/jf991116l
  23. Cavalli JF, Louisette LC, Loiseu AM. Comparison of static headspace, headspace solid phase microextraxtion, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of french olive oils. J. Agric. Food Chem. 51: 7709-7714 (2003) https://doi.org/10.1021/jf034834n
  24. Vernin GG Heterocyclic aroma compounds in foods: Occurrence and organoleptic properties. pp. 72-150. In: Chemistry of Heterocyclic Compounds in Flavours and Aromas. Vernin, G (ed). Ellis Horwood Limited, New York, NY, USA (1982)