Microencapsulation of Fish Oil by Low-molecular Weight Sodium Alginate

저분자 알긴산을 이용한 fish oil의 microencapsulation

  • Cho, Min (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Byung-Yong (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Rhim, Jong-Hwan (Department of Food Engineering, Mokpo University)
  • 조민 (경희대학교 식품생명공학과) ;
  • 김병용 (경희대학교 식품생명공학과) ;
  • 백무열 (경희대학교 식품생명공학과) ;
  • 임종환 (목포대학교 식품공학과)
  • Published : 2005.10.31

Abstract

Possibility of using low-molecular weight alginate as a wall material for encapsulation of fish oil was investigated. Encapsulation yield increased with increasing calcium chloride concentration up to 5% and was maintained thereafter, whereas slightly increased with increasing sodium alginate concentration up to 1.25% and decreased dramatically thereafter; emulsifier concentration had no effect on encapsulation yield. Loading efficiency increased with increasing content of core material. Encapsulation yields of low- and high-molecular weight alginates were similar, indicating low-molecular weight alginate can be used as wall material for encapsulation of fish oil.

정제어유의 산패에 영향을 줄 수 있는 요인을 피하기 위해 유화법을 이용한 알긴산 캡슐을 제조하고 캡슐을 구성하는 염화칼슘. 알긴산, 정제어유 그리고 유화제의 농도 그리고 피복물질로서의 저분자 알긴산이 캡슐의 수율에 미치는 특성을 살펴보았다. 염화칼슘 농도에 따른 캡슐의 수율은 0.5%까지는 증가하지만 그 이상의 농도에서는 변화가 없었고, 알긴산 농도는 1.25%까지 수율이 다소 증가하는 경향을 보였지만 1.5%에서 감소하였다. 내부물질의 함량이 증가할수록 캡슐의 봉입율도 높아졌고, 0.25-1.0%의 유화제 농도에서는 94%의 수율로 일정하게 관찰되었다. 이상의 결과로 가장 높은 수율을 얻기 위한 유화 캡슐화 공정의 적절한 조건을 염화칼슘: 0.5%, 알긴산: 1.25%, 내부물질: 0.75%, 유화제: 0.75%로 결정할 수 있었다. 또한 감마선에 의해 저분자화 된 알긴산을 피복물질로서 캡슐공정에 적용하였을 경우 캡슐의 수율 변화가 거의 없어 고분자 알긴산을 대체할 수 있는 가능성을 확인하였다.

Keywords

References

  1. Gibbs BF, Kermasha S, Alii I, Mulligan CJ. Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50: 213-224 (1999) https://doi.org/10.1080/096374899101256
  2. Lee SC, Rhim CH, Lee SC. Characteristics of spray dried polysaccharides for microencapsulation. Korean J. Food Sci. Technol. 29:1322-1326 (1997)
  3. Ribeiro AJ, Neufeld RJ, Arnaud P, Chaumeil JC. Micro-encapsulation of lipophilic drug in chitosan-coated alginate microspheres. Int. J. Pharmcol. 187: 115-123 (1999) https://doi.org/10.1016/S0378-5173(99)00173-8
  4. Henrist D, Lefebvre RA, Remon JP. Bioavailability of starch based hot stage extrusion formulations. Int. J. Pharmcol. 187: 185-191 (1999) https://doi.org/10.1016/S0378-5173(99)00186-6
  5. Murillo M, Gamazo C, Goni MM, Irache JM, Blanco-Prieto MJ. Development of microparticles prepared by spray-drying as a vaccine delivery system against brucellosis. Int. J. Pharmcol. 242: 341-344 (2002) https://doi.org/10.1016/S0378-5173(02)00212-0
  6. Heinzelmann K, Franke K. Using freezing and drying techniques of emulsions for the microencapsulation of fish oil improve oxidation stability. Coll. Surf B: Biointerfaces 12: 223-229 (1999) https://doi.org/10.1016/S0927-7765(98)00077-0
  7. Hildebrand GE, Tack JW. Microencapsulation of peptide and proteins. Int. J. Pharmcol. 196: 173-176 (2000) https://doi.org/10.1016/S0378-5173(99)00415-9
  8. Alan I. Thickening and Gelling for Food. Blackie Academic & Professional, Chapman & Hall. UK pp.1-21 (1997)
  9. Mori B, Kusima K, Iwasaki T, Omiya H. Dietary fiber content of seaweed. Nippon Nogeikagaku 55: 787-791 (1981) https://doi.org/10.1271/nogeikagaku1924.55.787
  10. Nishimune T, Sumimoto T, Yakusiji T, Kunita N. Determination of total dietary fiber in Japanese foods. J. Assoc. Off. Anal. Chem. 74: 350-359 (1991)
  11. Kennedy JF, Griffiths AJ, Atkins DP. The application of hydrocolloids, recent developments-future trends. Vol. 2. pp. 417-456. In: Gums and Stabilizers for the Food Industry. Phillips GO, Wedlock DA, Williams PD (eds). Pergamon Press. Oxford, UK (1984)
  12. McNeely WH, Pettitt DJH. Algin. pp. 49-82. In: Industrial Gums (2nd ed). Whistler RL, Bemiller JN (eds). Academic Press. New York, USA (1973)
  13. Kim YY, Cho YJ. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicus by thermal decomposition: 1. Changes in viscosity, average molecular weight and chemical structure of depolymerized alginate. J. Korean Fish Soc. 33: 325-330 (2000)
  14. Venter CS, Vorster HH, Van Der Nest DG. Composition between physiological effects of konjac-glucomannan and propionate in baboons fed 'western' diets. J. Nutr. 120: 1046-1053 (1990) https://doi.org/10.1093/jn/120.9.1046
  15. Schwartz SE, Levine GD. Effect of dietary fiber on intestinal glucose absorption and glucose tolerance in rats. Gastroenterology 79: 833-836 (1980)
  16. Kim YY, Lee KW, Kim GB, Cho YJ. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicus by thermal decomposition: 3. Excretion effects of cholesterol, glucose and cadmium (cd) in rats. J. Korean Fish Soc. 33: 393-398 (2000)
  17. Jiang G, lee UK, Maeng PJ, Hwang SJ. Evaluation of alginate microspheres prepared by emulsion and spray method for oral vaccine delivery system. J. Korean Pharmcol. Sci. 31: 241-256 (2001 )
  18. Park SM, Lee KT. Effects of pH and molecular weight on the intrinsic viscosity of carboxymethyl chitin. J. Korean Fish Soc. 28: 487-491 (1995)
  19. Vega MP, Lima EL, Pinto K. In-line monitoring of weight average molecular weight in solution polymerizations using intrinsic viscosity measurements. Polymer 42: 3909-3914 (2001) https://doi.org/10.1016/S0032-3861(00)00780-1
  20. Chang PS, Ha JS. Optimization of fish microencapsulation by response surface methodology and its storage stability. Korean J. Food Sci. Technol. 32: 646-653 (2000)
  21. Cho M, KIM BY, Rhim JH. Degradation of alginate solution by using $\gamma$-irradiation and organic acid. Korean J. Food Sci. Technol. 35: 67-71 (2003)
  22. Cho M, KIM BY, Rhim JH. Degradation of alginate solution and powder by $\gamma$-irradiation. Food Eng. Prog. 7: 141-145 (2003)
  23. Ana B, Manuel M, Domingo C. Formation of calcium alginate gel capsules: Influence of sodium alginate and $CaCl_2$ concentration on gelation kinetics. J. Biosci. Bioeng. 88: 686-689 (1999) https://doi.org/10.1016/S1389-1723(00)87103-0
  24. Lim SB, Jwa MK. Microencapsulation of anchovy oil by sodium alginate. J. Korean Soc. Food Sci. Nutr. 28: 890-894 (1999)
  25. You BJ, Lim YS. Effects of emulsifying conditions and alginate concentration of encapsulation ester compounds on retention rate of core material in microcapsules prepared with sea tangle alginates. J. Korean Fish. Soc. 35: 654-659 (2002)
  26. Han SC, Heo EJ, Lee KY, Kim YZ, Kim JC. Antioxidant effect of vitamin-C/alginate gel-entrapped liposomes for resistance of DHA autoxidation. Korean J. Biotechnol.. Bioeng. 18: 229-233 (2003)
  27. Chang PS, Cho GB. Optimization of the conditions for the O/W emulsion containing ${\omega}3$ polyunsaturated fatty acid. Korean J. Food Sci. Technol. 30: 1114-1119 (1998)
  28. Chang PS, Ha JS, Roh HJ, Choi JH. Opimization of conditions for the microencapsulation of $\alpha$-tocopherol and its storage stability. Korean J. Food Sci. Technol. 32: 843-850 (2000)