Predictive Growth Model of Native Isolated Listeria monocytogenes on raw pork as a Function of Temperature and Time

온도와 시간을 주요 변수로 한 냉장 돈육에서의 native isolated Listeria monocytogenes에 대한 성장예측모델

  • Hong, Chong-Hae (Department of Veterinary Medicine, Kangwon National University) ;
  • Sim, Woo-Chang (Korea Health Industry Development Institute) ;
  • Chun, Seok-Jo (Korea Health Industry Development Institute) ;
  • Kim, Young-Su (Korea Health Industry Development Institute) ;
  • Oh, Deog-Hwan (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Ha, Sang-Do (Department of Food Science and Technology, Chung-Ang University) ;
  • Choi, Weon-Sang (Department of Biotechnology, College of Natural Sciences, Dongguk University) ;
  • Bahk, Gyung-Jin (Korea Health Industry Development Institute, National Food Safety & Toxicology Center and the Food Safety Policy Center, Michigan State University)
  • Published : 2005.10.31

Abstract

Model was developed to predict the growth of Listeria monocytogenes in raw pork. Experiment condition for model development was full 5-by-7 factorial arrangements of temperature (0, 5, 10, 15, and $20^{\circ}C$) and time (0, 1, 2, 3, 18, 48, and 120 hr). Gompertz values A, C, B, and M, and growth kinetics, exponential growth rate (EGR), generation time (GT), lag phase duration (LPD), and maximum population density (MPD) were calculated based on growth increased data. GT and LPD values gradually decreased, whereas EGR value gradually increased with increasing temperature. Response surface analysis (RSA) was carried out using Gompertz B and M values, to formulate equation with temperature being main control factor. This equation was applied to Gompertz equation. Experimental and predictive values for GT, LPD, and EGR, compared using the model, showed no significant differences (p<0.01). Proposed model could be used to predict growth of microorganisms for exposure assessment of MRA, thereby allowing more informed decision-making on potential regulatory actions of microorganisms in raw pork.

본 연구는 냉장돈육에서의 식중독 원인균이면서 냉장온도에서 성장이 가능한 병원성균인 L. monocytogenes에 대한 적절한 위생관리를 제시하기 위하여 포장돈육 작업장 원료돈육에서 분리된 야생균주 L. monocytogenes 이용하여 돈육포장공정 및 유통조건에서의 L. mnocytogenes에 대한 성장예측모델을 제시하고자 실시하였다. 성장실험은 온도 5, 10, 15, $20^{\circ}C$ 시간은 0, 1, 2, 3, 18, 48, 120시간에서 실시하였으며, 이를 바탕으로 온도별 Gompertz value인 A, C, B, M의 값과 Growth kinetic인 exponential growth rate(EGR), generation time(GT), lag phase duration(LPD), maximum population density(MPD)를 산출하였다. GT, LPD는 온도가 상승할수록 그 값이 점점 낮아지는 경향을 나타났으며, EGR의 경우는 반대로 온도가 높아질수록 점점 높아지는 경향을 나타냈다. Gompertz value중 B와 M 값을 이용하여 온도를 주요 control factor로 선정한 반응표면분석(Response surface analysis)을 실시하여 온도에 따른 다항식을 산출하였고 이 식을 Gompertz 식에 적용하여 온도와 시간에 따른 냉장돈육에서의 L. monocytogenes에 대한 성장정도를 예측할 수 있는 성장예측모델을 제시하였다. 개발된 성장예측모델에 대한 검증은 GT, LPD, EGR에 대한 실험값과 예측값의 비교를 통하여 실시하였으며, 그 결과 GT, LPD, EGR 모두 통계적으로 유의하게 나타났다(p<0.01). 따라서 이 모델은 risk assessment 중 exposure assessment를 위한 성장예측모델로 충분히 이용가능 한 것으로 보이며, 추후 냉장돈육 위성관리기준에 대한 과학적 근거자료로 활용될 수 있을 것으로 보인다.

Keywords

References

  1. Rrackett RE. Presence of Listeria monocytogenes m food and water. Food Technol. 42: 162-164 (1988)
  2. Shelf LA. listeriosis and its transmission by food. Prog. Food Nutri. 13: 362-382 (1989)
  3. Truscott RB, Mcnab WB. Comparison of media and procedures for the isolation of Listeria monocytogenes from ground beef. J. Food Prot. 51: 626-628 (1988) https://doi.org/10.4315/0362-028X-51.8.626
  4. Schlech Wf, Lavigne PM, Bortolussi RA, Allen AC, Haldane AEV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV, Epidemic listeriosis-evidence for transmission by food. New Eng. J. Med. 308: 203-206 (1983) https://doi.org/10.1056/NEJM198301273080407
  5. Wehr HM. Listeria monocytogenes-A current dilemma. J. Assoc. Off. Anal. Chem. 70: 769-772 (1987)
  6. Whiting RC. Microbial Modelling, Crit. Rev. Food Sci. Nutr. 35: 467 -494 (1995) https://doi.org/10.1080/10408399509527711
  7. Van Impe JF, Poschet F, Geeraerd AH, and Vereecken KM. Towards a novel class of predictive microbial growth models. Int. J. Food Microbiol. 100: 97-105 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.10.007
  8. Karl M, Da-Wen S. Predictive food microbiology for the meat industry; A review. Int. J. Food Microbiol. 52: 1-27 (1999) https://doi.org/10.1016/S0168-1605(99)00126-9
  9. Panisello PJ, Quantick PC. Application of Food MicroModel predictive software in the development of hazard analysis critical control point (HACCP) systems. Food Microbiol. 15: 425-439 (1998) https://doi.org/10.1006/fmic.1998.0195
  10. McMeekin TA, Olley J, Ratkowsky DA, Ross T. Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol. 73: 395-407 (2002) https://doi.org/10.1016/S0168-1605(01)00663-8
  11. Mafart P. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics. Int. J. Food Microbiol. 100: 239-251 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.10.023
  12. Hong JH, An SC. Isolation and Serotyping of Liseria monocytogenes in Pork Fabrication Processing Environment. J. Food Hyg. Safety 13: 425-429 (1998)
  13. Ukuku O, Fett W. Behavior of Listeria monocytogenes inoculated on cantaloupe surface and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. J. Food Prot. 65: 924-930 (2002) https://doi.org/10.4315/0362-028X-65.6.924
  14. Buchanan RL, Cygnarowicz ML. A Mathematical Approach toward Defining and Calculating the Duration of the Lag Phase. Food Microbiol. 7: 237-240 (1990) https://doi.org/10.1016/0740-0020(90)90029-H
  15. Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extend of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62: 479-490 (1987) https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  16. Buchannan RL, Stahl HG, Whiting RC. Effect and interaction of temperature, pH, atmosphere, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. J. Food Prot. 52: 844-851 (1989) https://doi.org/10.4315/0362-028X-52.12.844
  17. Smith-Simpson S, Schaffner dw. Development of a model to predict growth of Clostridium perfringens in cooked beef during cooling. J. Food Prot. 68:336-341 (2005) https://doi.org/10.4315/0362-028X-68.2.336
  18. Grau FH, Vanderlinde PB. Growth of Listeria monocytogenes on vacuum packaged beef. Meat Sci. Technol. 34: 518-519 (1988)
  19. El-Shenawy MA, Marth MA. Inhibition and inactivation of Listeria monocytogenes by sorbic acid. J. Food Prot. 51: 842-847 (1988) https://doi.org/10.4315/0362-028X-51.11.842
  20. Buchanan RL. Predictive Microbiology: Mathematical Modeling of Microbial Growth in Foods. Am. Chem. Soc. 484: 250-260 ( 1992)
  21. Buchanan RL. Predictive Food Microbiology. Trends Food Sci. Technol. 4: 6-11 (1993) https://doi.org/10.1016/S0924-2244(05)80004-4
  22. Mann JE, Smith L, Brashears MM. Validation of time and temperature values as critical limits for Salmonella and background flora growth during the production of fresh ground and boneless pork products. J. Food Prot. 67:1389-1393 (2004) https://doi.org/10.4315/0362-028X-67.7.1389
  23. Buchanan RL, Klawitter LA. Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures.lnt. J. Food Microbiol. 12: 235-246 (1991) https://doi.org/10.1016/0168-1605(91)90074-Y
  24. Nauta MJ. Modelling bacterial growth in quantitative microbiological risk assessment is it possible? Int. J. Food Microbiol. 73: 297-301 (2002) https://doi.org/10.1016/S0168-1605(01)00664-X
  25. Philip HE. Predictive microbiology and HACCP. J. Food Prot. Suppl.: 48-53 (1996)
  26. Bahk GJ, Kim CN, Roh WS, Hong CH, Chun SJ, Sim WC, Oh WT, Rho MJ. Application of Predictive Food Microbiology Model in HACCP System of Milk. J. Food Hyg. Safety 16: 103-110 (2001)
  27. Buchanan RL, Phillips JG. Response surface model for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration, and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53: 370-376 (1990) https://doi.org/10.4315/0362-028X-53.5.370
  28. Duffy G, Sheridan JJ, Buchanan RL, McDowell DA, Blair IS. The effect of aeration, initial inoculum and meat rnicroflora on the growth kinetics of Listeria monocytogenes in selective enrichments broths. Food Microbiol. 11: 429-438 (1994) https://doi.org/10.1006/fmic.1994.1048