Physical Properties of Dietary Fiber Sources from Peel of Asian Pear Fruit at Different Growth Stages

생육단계별 배 과피에서 분리한 식이섬유원의 물리적 특성

  • Zhang, Xian (Department of Food Science, Yanbian National University) ;
  • Lee, Fan-Zhu (Department of Food Science, Yanbian National University) ;
  • Eun, Jong-Bang (Department of Food Science and Technology and Functional Food Research Center, Chonnam National University)
  • 장선 (연변대학교 농학원 식품과학계) ;
  • 이범수 (연변대학교 농학원 식품과학계) ;
  • 은종방 (전남대학교 식품공학과.기능성식품연구센터)
  • Published : 2005.12.31

Abstract

Physical properties and compositions of dietary fiber sources (DFS) from peels of Asian pear fruit, Hosui, Niitaka and Chuwhangbae, were examined at different growth stages, young, unripe, and ripe fruits, to investigate their use as functional ingredients. Total dietary fiber (TDF) contents of DFS prepared from peels of three cultivars at three stages were high, 74.00-88.38%, with most being insoluble dietary fiber. Total phenolic compound contents of DFS were 1.64-4.46mg/g, with those of Niitaka and Chuwhangbae increasing with growth stages. Density of DFS from young fruit was significantly lower than those from unripe and ripe fruits (p<0.05), because particle size of DFS increased with growth stages within cultivars. Water-holding capacity (WHC) and oil absorption were 3.11-6.03g water/g solid and 1.98-2.57g oil/g sample, respectively. Young fruits, which showed lowest WHC value, had highest oil absorption value. Particle size of DFS had significant correlation with density, WHC, and oil absorption (p<0.05). Physical properties of DFS were mainly influenced by cellulose and uronic acid.

상품성이 낮은 배 그리고 가공 부산물의 하나인 과피의 기능성식품 소재로써의 이용가능성을 검토하고자 생육단계별 풍수, 신고, 추황배의 과피로부터 식이섬유원을 분리하여 이들의 성분을 분석하고 물리적 특성을 측정하였다. 3 품종의 3 생육단계에서 과피로부터 분리한 식이섬유원의 총식이섬유 함량은 74.00-88.38%로 비교적 높은 수준이었고 그 중 92-94%가 불용성 성분이었다. 분리된 식이섬유원에 잔존하는 총페놀성물질의 함량은 1.64-4.46mg/g이었고 신고와 추황배에서는 과실의 성숙도에 따라 잔존하는 총페놀성물질의 함량이 증가하였다. 평균입자의 크기는 $255-381{\mu}m$이었고 동일한 품종내에서 성숙된 과실일수록 분리된 식이섬유원의 입자는 증대하였으며 이에 따라 유과에서 분리한 식이섬유윈의 밀도가 유의적으로 작았다. 보수력은 3.11-6.03g water/g solid이었고 신고와 추황배에서는 유과, 미숙과, 성숙과의 순으로 점차 증가하였으며 oil 흡착력은 1.98-2.57g oil/g sample로 보수력보다 낮은 값을 보였고 보수력이 낮은 유파의 식이섬유원이 oil 흡착력은 컸다. 식이섬유원의 입자의 크기는 밀도, 보수력, oil 흡착력과 높은 상관관계를 나타내었고 물리적 특성에 영향을 주는 주요성분은 Cellulose와 uronic acid로 나타났다. 결론적으로 배 과피에서 분리한 식이섬유원은 총 식이섬유 함량이 높고 생리활성 물질인 페놀성물질을 함유하고 있으며 미숙과, 성숙과 식이섬유원은 비교적 높은 보수력을 갖고 있어 새로운 식이섬유원 소재로 이용이 가능할 것으로 생각된다.

Keywords

References

  1. Noh WS, Heo SH. Health Supplement Food and Functional Food. Hyoil Co. Seoul, Korea. pp. 29-35 (2000)
  2. Jo HY. Functional foods. Bioindustry 8: 44-51 (1995)
  3. Cho HM. The perspectives of pear industry for 21C in Korea. Korean J. Hort. Sci. Technol. 18: 444-452 (2000)
  4. Leontowicz M, Gorinstein S, Leontowicz H, Krzeminski R, Lojek A, Katrich E, Ciz M, Martin-Belloso O, Soliva-Fortuny R, Haruenkit R, Trakhtenberg S. Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterol-containing diets. J. Agric. Food Chem. 51: 5780-5785 (2003) https://doi.org/10.1021/jf030137j
  5. Zhang X, Na CS, Kim JS, Lee FZ, Eun JB. Changes in dietary fiber content of flesh and peel in three cultivars of Asian pears during growth. Food Sci. Biotechnol. 12: 358-364 (2003)
  6. Larrauri JA, Ruperez P, Saura-Calixto F. Pineapple shell as a source of dietary fiber with associated polyphenols. J. Agric. Food Chem. 45: 4028-4031 (1997) https://doi.org/10.1021/jf970450j
  7. Saura-Calixto F. Antioxidant dietary fiber product: A new concept and potential food ingredient. J. Agric. Food Chem. 46: 4303-4306 (1998) https://doi.org/10.1021/jf9803841
  8. Jimenez-Escrig A, Rincon M, Pulido R, Saura-Calixto F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 49: 5489-5493 (2001) https://doi.org/10.1021/jf010147p
  9. Hong JS, Kim MK, Yoon S, Ryu NS. Preparation or dietary fiber sources using apple pomace and soymilk residue. J. Korean Agric. Chem. Soc. 36: 73-79 (1993)
  10. Ben-Arie R, Sonego L. Changes in pectic substances in ripening pears. J. Amer. Soc. Hort. Sci. 104: 500-505 (1979)
  11. Martin-Cabrejas MA, Esteban RM, Lopez-Andreu FJ, Waldron K, Selvendran RR. Dietary fiber content of pear and kiwi pomaces. J. Agric. Food Chem. 43: 662-666 (1995) https://doi.org/10.1021/jf00051a020
  12. Yuk HG, Choi JH, Cho YJ, Ha JU, Hwang YI, Lee SC. Investigation of reactive conditions to extract pectin with Exo-polygalacturonase from pear pomace. Korean J. Food Sci. Technol. 31: 971-976 (1999)
  13. McConnell AA, Eastwood MA, Mitchell WD. Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agric. 25: 1457-1464 (1974) https://doi.org/10.1002/jsfa.2740251205
  14. Hong JS, Kim MK, Yoon S, Ryu NS. Preparation of dierary fiber sources using apple pomace and soymilk residue. J. Korean Agric. Chem. Soc. 36: 73-79 (1993)
  15. Prosky L, Asp NG, Schwiezer TF, DeVries JW, Furda I. Determination of insoluble soluble and total dietary fiber in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 71: 1017-1022 (1988)
  16. Van Soest PJ, Wine RH. Use of detergents in the analysis of fibrous feeds IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50: 50-55 (1967)
  17. Van Soest PJ. Collaborative study of Acid-detergent fiber and lignin. J. Assoc. Off Anal. Chem. 56: 781-784 (1973)
  18. TAPPI Test methods: Acid-insoluble lignin in wood and pulp. T 222 om-88. TAPPI (1989)
  19. McCready RM, McComb EA. Extraction and determination of total pectic materials fruits. Anal. Chem. 24: 1986-1988 (1952) https://doi.org/10.1021/ac60072a033
  20. Kintner PK, Van Buren JP. Carbohydrate interference and its correction in pectin analysis using the m-hydroxydiphenyl method. J. Food Sci. 47: 756-759 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb12708.x
  21. A.O.A.C. Official methods of analysis. 13th ed., Association of Official Analytical Chemists. Washington, DC, USA (1980)
  22. Heller SN, Rivers JM, Hackler LR. Dietary fiber: The effect of particle size and pH on its measurement. J. Food Sci. 42: 436-439 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb01517.x
  23. Lapple CE. Particle-size analysis and analyzers. Chem. Eng. 75: 149-156 (1968)
  24. Parrott ME, Thrall BE. Functional properties of various fibers: Physical properties. J. Food Sci. 43: 759-765 (1978) https://doi.org/10.1111/j.1365-2621.1978.tb02412.x
  25. Chen H, Rubenthaler GL, Schanus EG. Effect of apple fiber and cellulose on the physical properties of wheat flour. J. Food Sci. 53: 304-305 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb10242.x
  26. SAS Institute, Inc. SAA User's guide. Statistical Analysis Systems Institute, Cary, NC, USA (2000)
  27. Han JW. Factors influencing color appearance and fruit skin development in pyrus pyrifolia nakai. PhD thesis, Chonnam National University, Kwangju, Korea (2000)
  28. Weber CW, Kohlhepp EA, Idouraine A, Ochoa LJ. Binding capacity of 18 fiber sources for calcium. J. Agric. Food Chem. 41: 1931-1935 (1993) https://doi.org/10.1021/jf00035a023
  29. Spiller GA. Suggestions for a basis on which to determine a desirable intake of dietary fiber. pp. 351-353. In: Handbook of dietary fiber in human nutrition. Spiller GA, 2nd ed. CRC Press, Boca Raton, FL, USA (1993)
  30. Sosulski Fw, Cadden AM. Composition and physiological properties of several sources of dietary fiber. J. Food Sci. 47: 1472-1477 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb04964.x
  31. Kahng TS, Yoon HS. Determination and physical properties of dietary fiber in vegetables. J. Korean Soc. Food Sci. Nutr. 16: 49-54 (1987)
  32. Kim SH, Park HY, Park WK. Determination and physical properties of dietary fiber seaweed products. J. Korean Soc. Food Sci. Nutr. 17: 320-325 (1988)
  33. Holloway WD, Greig RI. Water holding capacity of hemicelluloses from fruits, vegetables and wheat bran. J. Food Sci. 49: 1632-1633 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12867.x
  34. Kye SK. Water binding capacity of vegetable fiber. Korean J. Food Sci. Nutr. 9: 231-235 (1996)
  35. Hwang JK. Physicochemical properties of dietary fibers. J. Korean Soc. Food Sci. Nutr. 25: 715-719 (1996)
  36. Noriaki K. Application of fiber of potato form Sazumaa to fish meat paste product. Shokuhin to Kagaku (Food & Science) 34: 104-110 (1992)