Effect of NADH-Dependent Enzymes Related to Oxygen Metabolism on Elimination of Oxygen-Stress of Bifidobacteria

NADH요구 산소대사관련 효소가 bifidobacteria의 산소스트레스 제거에 미치는 영향

  • Ahn, Jun-Bae (Department of Culinary Arts & Food Technology, Youngdong University) ;
  • Park, Jong-Hyun (Department of Food and Bioengineering, Kyungwon University)
  • 안준배 (영동대학교 호텔식품외식학부) ;
  • 박종현 (경원대학교 분자식품생명공학과)
  • Published : 2005.12.31

Abstract

Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.

Bifidobacteria의 효과적인 이용을 위해서는 산소에 내성을 갖는 균주를 선발하는 연구 외에도 산소 스트레스에 대한 방어 기작에 대한 기초적인 연구가 필요하다. 인체로부터 분리된 산소 내성 bifidobacteria는 산소제거활성을 가지고 있었으며 이는 열처리 및 극단적인 pH(pH 2.0)하에서 산소제거활성이 소실되는 것으로 보아 효소가 관여 할 가능성을 확인하였다. 또한 산소제거활성을 보이는 주된 효소를 탐색해본 결과 NADH를 공급하였을 때만 산소제거활성을 보여 NADH oxidase가 주된 역할을 하는 효소임을 알 수 있었다. 또한 산소 내성 균주는 높은 NADH peroxidase 활성을 보유한 것으로 보아 NADH oxidase의 작용에 의해 생성되는 $H_2O_2$는 NADH peroxidase에 의해 무독화 되는 것으로 판단되었다. 배양 중 산소를 공급하여 산소스트레스를 주었을 경우 NADH oxidase와 NADH peroxidase 활성이 1시간 이내에 급격히 증가하였고 산소 공급 후 2시간 동안 배양액 중 용존 산소가 크게 증가하지 않았다. 산소공급 후 2시간 이상이 경과하면 NADH oxidase와 NADH peroxidase활성이 감소하고 용존 산소가 급격히 증가하였고 산소스트레스에 대한 방어 체계가 붕괴되는 현상이 관찰되었다. 즉, 산소 내성 bifidobacteria는 일정 한계까지는 환경중의 산소를 NADH oxidase로 제거하고 생성되는 $H_2O_2$는 NADH peroxidase에 의해 제거시키는 방어 체계를 갖고 있음을 알 수 있었다.

Keywords

References

  1. Gibson GR, Wang X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol. 77: 412-420 (1994) https://doi.org/10.1111/j.1365-2672.1994.tb03443.x
  2. Raibaud P. Bacterial interactions in the gut. pp. 9-24. In: Probiotics-The scientific basis. Fuller R (ed). Champman and Hall, London, UK (1992)
  3. Goldin BR, Lichtenstein AH, Gorbach SL. The roles of the intestinal flora. pp. 500-512. In: Modem nutrition in health and disease. Shils ME, Young VR (ed). LEA and FEBIGER, Philadelphia, USA (1988)
  4. Mitsuoka T. Bifidobacteria and their role in human health. J. Indus. Microbiol. 6: 263-271 (1990) https://doi.org/10.1007/BF01575871
  5. Glenn EH, Lambrecht RS. Augmentation of Macrophage phagocytic activity by cell-free extracts of selected lactic acid producing bacteria. J. Dairy Sci. 76: 2485-2492 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  6. Seikine K, Sekine EW, Ohta J, Toida T, Tatsuki T, Kawashima T, Hashimato Y. Induction and activation of tumorcidal cells in vivo and in vitro by the bacterial cell wall of Bifidobacterim infantis. Bifidobacteria Microflora 13: 65-77 (1994) https://doi.org/10.12938/bifidus1982.13.2_65
  7. Zhang XB, Ohata Y. Binding of mutagens by fraction of the cell skeleton of lactic acid bacteria. J. Dairy Sci. 74: 1477-1481 (1991) https://doi.org/10.3168/jds.S0022-0302(91)78306-9
  8. Modler HW, Mckellar RC, Yaguchi M. Bifidobacteria and bifidogenic factors. Can. Inst. Food Sci. Technol. J. 23: 29-41 (1990) https://doi.org/10.1016/S0315-5463(90)70197-6
  9. Goldin BR, Gorbach SL. Probiotics for humans. pp. 355-376. In: Probiotics- The scientific basis. Fuller R (ed). Champman and Hall, London, UK (1992)
  10. Hawins SM. Bifidobacteria in dairy products. Cult. Dairy Prod. J. 28: 16-20 (1993)
  11. Hughes DB, Hoover DG. Bifidobacteria: Their potential for use in American dairy products. Food Technol. 45: 74-83 (1991)
  12. Ahn JB, Ji GE, Jeong HK, Lee KH, Park JH. Isolation and selection of Bifidobacterium spp. from Korean feces for fermented dairy foods. Korean J. Dairy Sci. 19: 349-360 (1997)
  13. Ahn JB, Lee KH, Park JH. Isolation and identification of oxygen resistant Bifidobacterium sp. from Korean and its characteristics. Korean J. Food Nutr. 10: 122-126 (1997)
  14. Condon, S. Aerobic metabolism of lactic acid bacteria. Irish J. Food. Sci. Technol. 7: 15-25 (1983)
  15. Condon, S. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269-280 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02465.x
  16. Anders RF, Hogg DM, Jago GR. Formation of hydrogen peroxide by Group N streptococci and its effect on their growth and metabolism. Appl. Microbiol. 19: 602-612 (1970)
  17. Gotz F, Sedewitz B, Elstner EF. Oxygen utilization by Lactobacillus plantarum- Oxygen consuming reactions. Arch. Microbiol. 125: 209-214 (1980) https://doi.org/10.1007/BF00446878
  18. Ahn JB, Hwang HJ, Park JH. Physiological responses of oxygen tolerant anaerobic Bifidobacterium longum under oxygen. J. Microbiol. Biotechnol. 11: 443-451 (2001)
  19. Ji GE, Lee SK, Kim IH. Improved selective medium for isolation and enumeration of Bifidobacterium sp.. Korean J. Food Sci. Technol. 26: 526-531 (1994)
  20. Shin SY, Park JH. Changes of oxidative enzymes and fatty acid composition of Bifidobacterium adolescentis and B. longum under anaerobic and aerated condition. Korean J. Appl. Microbiol. Biotechnol. 26: 7-14 (1998)
  21. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140 (1952)
  22. Tabatabi LB, Walker HW. Oxidation-reduction potential and growth of Clostridium perfringens and Pseudomonas fluorescens. Appl. Microbiol. 20: 441-446 (1970)
  23. Phae CG, Lee WK, Kim BH, Koh JH, Kim SW. Effects of the redox potential of the acidogenic reactor on the performance of a two-stage methanogenic reactor. J. Microbiol. Biotechnol. 6: 30-35 (1996)
  24. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75: 3296-3306 (1992) https://doi.org/10.3168/jds.S0022-0302(92)78105-3