포도종실 에탄올 추출물에 함유된 (+)-카테킨, (-)-에피카테킨의 모세관 전기영동법에 의한 분석

Capillary Electrophoretic Method for the Determination of (+)-Catechin, (-)-Epicatechin in Grape Seed Ethanol Extract

  • 최원균 (한경대학교 식품생물공학과 및 식품생물산업연구소) ;
  • 정양섭 (한경대학교 식품생물공학과 및 식품생물산업연구소) ;
  • 정하열 (한경대학교 식품생물공학과 및 식품생물산업연구소)
  • Choi, One-Kyun (Department of Food Science & Biotechnology and Food & Bio-industrial Research Center, Hankyong National University) ;
  • Chung, Yang-Seop (Department of Food Science & Biotechnology and Food & Bio-industrial Research Center, Hankyong National University) ;
  • Chung, Ha-Yull (Department of Food Science & Biotechnology and Food & Bio-industrial Research Center, Hankyong National University)
  • 발행 : 2005.08.31

초록

포도종실추출물에 함유되어 강력한 항산화 작용을 나타내는 성분인 proanthocyanin의 구성 성분이면서 에피머인 (+)-catechin과 (-)-epicatechin을 CE법을 이용하여 분석하였다. CE법을 이용한 catechin류 분석의 최적 조건은 fused silica capillary$(20cm{\times}50{\mu}m)$, current $56{\mu}A$, voltage 10 kV, phosphate/borate buffer(pH 6.0), 온도 $20^{\circ}C$로서 (+)-catechin과 (-)-epicatechin을 6분 이내에 매트릭스의 방해없이 분석할 수 있었다. 비색법, HPLC법과 CE분석법의 특징을 비교해 보면 비색법은 (+)-catechin과 (-)-epicatechin합한 총 함량은 알 수 있으나 두성분의 분리는 할 수 없었다. 또한 HPLC방법은 표준품은 두 성분이 잘 분리되었으나 시료 분석 시 proanthocyanin을 가수분해하기 위해 첨가한 산으로 인해 시료가 강산성을 띠어 컬럼 손상되는 문제가 있어 직접 분석이 불가능하여 시료를 희석해야 했으며, 희석을 하여 분석할 경우에도 많은 잡 피크들로 정량적인 결과를 얻기에 용이하지 않았다. 한편 CE법의 경우 산 가수분해한 시료를 별다른 처리 없이도 다른 성분의 방해 없이 분석할 수 있었다. 분석소요시간의 경우 비색법은 실험단계가 복잡하여 많은 시간이 걸렸으며 HPLC는 15분 그리고 CE는 6분 이내에 분석이 가능하였다. 재현성과 직선성을 보면 HPLC와 CE의 방법이 모두 양호하였고 검출한계에 있어서는 CE법이 0.035mg/L로서 검출감도가 매우 우수하였다. 이와 같이 CE법은 포도종실에 존재하는 (+)-catechin과 (-)-epicatechln을 분석하는데 방법의 용이성, 분석결과의 정확성에 있어서 기존 방법인 비색법과 HPLC 방법보다 우수한 결과를 나타내었다.

Capillary electrophoresis (CE) method was developed to determine (+)-catechin and (-)-epicatechin contents in grape seed ethanol extract. CE separation was achieved using 100 mM phosphate and borate buffer at pH 6.0 as background electrolyte and fused silica capillary with 50 microns x 375 microns O.D. (effective length 20.0cm) maintained at $25^{\circ}C$. The applied voltage was 10kV, and detection was performed by DAD at 210 nm, Two catechins were well separated within 6 min with repeatability of <0.8% RSD for migration time and <2.0% RSD for peak area, and correlation coefficients higher than 0.994 were obtained from 58.0 to 174.0 mg/L with detection limit of 0.035 mg/L. Separated compounds were successfully determined. CE method was easy to handle and showed good reproducibility. CE method was compared with conventional coloring and HPLC methods, and main advantages of CE method were low amount of sample required, simple pre-sample treatment, good recovery rate, and short analysis time.

키워드

참고문헌

  1. Kanner J, Frankel EN, Granit R, German B, Kinsella JE. Natural antioxidant in grapes and wines. J. Agric. Food Chem. 42: 64-69 (1994) https://doi.org/10.1021/jf00037a010
  2. Frankel EN, Waterhouse AL, Tussedre PL. Principle phenolic phytochernicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoprotein. J. Agric. Food Chem. 43: 890-894 (1995) https://doi.org/10.1021/jf00052a008
  3. Teissedre PL, Frankel EN, Waterhouse AL, Peleg H, German JB. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J. Sci. Food. Agric. 70: 55-61 (1996) https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X
  4. Mayer AS, Yi OS, Person DA, Waterhouse AL, Franke EN. Inhibition of human LDL oxidation in relation to composition of phenolic antioxidants in grapes (Vitis vinifera). J. Agric. Food Chem. 45: 1638-1643 (1997) https://doi.org/10.1021/jf960721a
  5. Chung HY, Lee JH. Processing method of grape seed extract containing natural antioxidant activity. Korean patent 0,298,512 (2001)
  6. Chung HY, Yoon SJ. Antioxidant activity of grape seed ethanol extract. J. Korean Soc. Food. Sci. Nutr. 31: 893-898 (2002) https://doi.org/10.3746/jkfn.2002.31.5.893
  7. Chung HY, Yoon SJ. Antioxidant activity of grape seed ethanol extract according to serial solvent fractionation. J. Korean Soc. Food Sci. Nutr. 31: 1092-1096 (2002) https://doi.org/10.3746/jkfn.2002.31.6.1092
  8. Chung HY, Yoon SJ. Antimicrobial activity of grape seed ethanol extract. J. Korean Soc. Food Sci. Nutr. 32: 109-114 (2003) https://doi.org/10.3746/jkfn.2003.32.1.109
  9. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis viniferai extracts on peroxidation models in vitro. Food Chem. 73: 285-290 (2001) https://doi.org/10.1016/S0308-8146(00)00298-3
  10. Laparra J, Michaud J, Masquelier J. Action of oligomeric procyanidins on vitamin C deficient guinea pig. Bull. Soc. Pharmacol. Bordeaux. 118: 7-13 (1979)
  11. Korea Foods Industry Association. 161. grape seed extract. In Food Additive Revolution. Korea Foods Industry Association. pp.942-943 (1998)
  12. Teresa EB, Yolanda GF, Julian CR, Celestino SB. Characterisation of procyanidins of Vitis vinifera varity Tinta del pais grape seeds. J. Agric. Food Chem. 40: 1794-1799 (1992) https://doi.org/10.1021/jf00022a013
  13. Ricardo da Silva JM, Rigaud J, Cheynier V, Cherminati A, Moutounet M. Procyanidin dimers and trimers from grape seeds. Phytochem. 30: 1259-1264 (1991) https://doi.org/10.1016/S0031-9422(00)95213-0
  14. Oszamianski J, Ramos T, Bourzeix M. Fractionation of phenolic compounds in red wine. Am. J. Enol. Vitic. 39: 259-262 (1988)
  15. Vande Casteele K, Geiger H, Van Sumere CF. Separation of phenolics and coumarins by reversed-phase high performance liquid chromatography. J. Chromatogr. 258: 111-114 (1983) https://doi.org/10.1016/S0021-9673(00)96403-3
  16. Burtscher E, Binder H, Concin R, Bobleter O. Separation of phenols, phenolic aldehydes, ketones and acids by high performance liquid chromatography. J. Chromatogr. 252: 167-176 (1982) https://doi.org/10.1016/S0021-9673(01)88408-9
  17. Singleton VL, Trousdale E. White wine phenolics: varietal and processing differences as shown by HPLC. Am. J. Enol. Vitic. 34: 27-34 (1983)
  18. Mikkers FEP, Everaerts FM, Verheggen TPEM. High-performance zone electrophoresis. J. Chromatogr. 169: 11-20 (1979) https://doi.org/10.1016/0021-9673(75)85029-1
  19. Claire RL. Capillary electrophoresis. Anal. Chem. 68: 569-586 (1996) https://doi.org/10.1021/a1960018a
  20. Knox JH. Terminology and nomenclature electrophoresis systems. J. Chromatogr. 680: 3-13 (1994) https://doi.org/10.1016/0021-9673(94)80046-4
  21. Tavares MFM, McGuffin VL. Theoretical model of electroosmotic flow for capillary zone electrophoresis. Anal. Chem. 67: 3687-3696 (1995) https://doi.org/10.1021/ac00116a012
  22. Dalluge JJ, Nelson BC, Thomas JB, Sander LC. Selection of column and gradient elution system for the separation of catechins in green tea using high performance liquid chromatography. J. Chromatogr. 793: 265-274 (1998) https://doi.org/10.1016/S0021-9673(97)00906-0
  23. Sun B, Leandro C, Julian CR, Icardo da Silva JM, Spranger I. Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 46: 1390-1396 (1998) https://doi.org/10.1021/jf970753d
  24. Matthews S, Milia I, Scalbert A, Pollet B, Lapierre C, Herve du Penhoat CLM, Rolando C, Donnely DMX. Method for estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles. J. Agric. Food Chem. 45: 1195-1201 (1997) https://doi.org/10.1021/jf9607573
  25. Horie H, Mukai T, Kohata K. Simultaneous determination of qualitatively important components in green tea infusions using capillary electrophoresis. J. Chromatogr. 758: 332-335 (1997) https://doi.org/10.1016/S0021-9673(96)00764-9