REP-PCR Genotyping of Four Major Gram-negative Foodborne Bacterial Pathogens

주요 식중독 그람 음성 세균 4속의 REP-PCR genotyping

  • Jung, Hye-Jin (Department of Food Science and Technology, Chung-Ang University) ;
  • Seo, Hyeon-A (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Young-Joon (Department of Food Science and Technology, Chung-Ang University) ;
  • Cho, Joon-Il (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, Chung-Ang University)
  • Published : 2005.08.31

Abstract

Dispersed repetitive DNA elements in genomes of microorganisms differ among and within species. Because distances between repetitive sequences vary depending on bacterial strains, genomic fingerprinting with interspersed repetitive sequence-based probes can be used to distinguish unrelated organisms. Among well-known bacterial repetitive sequences, Repetitive Extragenic Palindromic (REP) sequence has been used to identify environmental bacterial species and strains. We applied REP-PCR to detect and differentiate four major Gram-negative food-borne bacterial pathogens, E. coli, Salmonella, Shigella, and Vibrio. Target DNA fragments of these pathogens were amplified by REP-PCR method. PCR-generated DNA fragments were separated on 1.5% agarose gel. Dendrograms for PCR products of each strain were constructed using photo-documentation system. REP-PCR reactions with primer pairs REP1R-I and REP2-I revealed distinct REP-PCR-derived genomic fingerprinting patterns from E. coli, Salmonella, Shigella, and Vibrio. REP-PCR method provided clear distinctions among different bacterial species containing REP-repetitive elements and can be widely used for typing food-borne Gram-negative strains. Results showed established REP-PCR reaction conditions and generated dendrograms could be used with other supplementary genotyping or phenotyping methods to identify isolates from outbreak and to estimate relative degrees of genetic similarities among isolates from different outbreaks to determine whether they are clonally related.

본 연구에서는 E. coli. Salmonella, Shigella, Vibrio 등 4속의 주요 식중독유발 그람 음성 세균들을 대상으로 반복성 염기서열인 REP DNA sequence를 응용한 REP-PCR을 실시하였다. 이전의 보고에서 이들 4속의 식중독 유발세균 중 각각 혹은 일부를 대상으로 반복성 염기서열을 이용한 PCR을 적용한 사례는 있지만 그때 적용한 primer, PCR 반응조건 및 전기영동조건 등이 다양하였다. 그러므로 본 연구에서는 이와같은 4속의 세균들에 대하여 최적화된 동일한 primer와 PCR 반응조건 및 전기영동조건을 표준조건으로서 적용하였다. 그 결과로서 모든 4속의 식중독 세균 균주마다 REP-PCR 후 생성되는 fingerprinting pattern에서 속마다 1-3개의 공통적이며 독특한 band가 생성되는 것이 확인되어 이러한 pattern을 이용한 속 수준의 분리 동정과 그와 같은 주요 band들 이외의 부수적인 band들을 고려하여 종 수준까지의 분리도 가능함을 확인하였다. 따라서 본 연구를 통하여 반복적 DNA 염기서열을 이용한 REP-PCR이 주요 식중독 세균의 분리 동정 방법으로 사용될 수 있음을 확인하였다. 또한 본 연구를 통하여 얻은 결과는 더 많은 속(genus)의 식중독세균을 대상으로 한 새로운 분리 동정 방법을 확립하기 위하여 사용될 수 있을 것이다.

Keywords

References

  1. Rajashekara G. Haverly E, Halvorson DA, Ferris KE, Lauer DC, Nagaraja KY. Multidrug-resistant Salmonella typhimurium DT104 in poultry. J. Food Prot. 63: 155-161 (2000) https://doi.org/10.4315/0362-028X-63.2.155
  2. Johnson JR, Clabots C. Improved repetitive-element PCR fingerprinting of Salmonella enterica with the usc of extremely elevated annealing temperatures. Clin. Diag. Lab. Immun. 7: 258-264 (2000)
  3. Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 66: 2572-2577 (2000) https://doi.org/10.1128/AEM.66.6.2572-2577.2000
  4. Johnson JR, O'Bryan TT. Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli. Clin. Diag. Lab. Immun. 7: 265-273 (2000)
  5. Dalla-Costa LM, Irino K, Rodrigues J, Rivera ING, Trabulsi LR. Characterisation of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J. Med. Microbiol. 47: 227-234 (1998) https://doi.org/10.1099/00222615-47-3-227
  6. Liu PYF, Lau YJ, Hu BS, Shyr JM, Shi ZY, Tsai WS, Lin YH, Tseng CY. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J. Clin. Microbiol. 33: 1779-1783 (1995)
  7. Navia MM, Capitano L, Ruiz J, Vargas M, Urassa H, Schellemberg D, Gascon J, Vila J. Typing and characterization of mechanisms of resistance of Shigella spp. isolated from feces of children under 5 years of age from lfakara, Tanzania. J. Clin. Microbiol. 37: 3113-3117 (1999)
  8. Clark CG, Kravetz AN, Dendy C, Wang G, Tyler KD, Johnson WM. Investigation of the 1994-5 Ukrainian Vibrio cholerae epidemic using molecular methods. Epidemiol. Infect. 121: 15-29 (1998) https://doi.org/10.1017/S0950268898008814
  9. Olsen JE, Aabo S, Hill W, Notermars K, Granum PE, Popovic T, Rasmussen HN, Olsvik O. Probes and polymerase chain reaction for detection of food-borne bacterial pathogens. Int. J. Food Microbiol. 28: 1-78 (1995) https://doi.org/10.1016/0168-1605(94)00159-4
  10. Olive DM, Bean P. Principle and application of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661-1669 (1999)
  11. Higgins CF, Ames GFL, Barnes WM, Clement JM, Hofnung M. A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760-762 (1982) https://doi.org/10.1038/298760a0
  12. Hulton CSJ, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825-834 (1991) https://doi.org/10.1111/j.1365-2958.1991.tb00755.x
  13. Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ, Claverys JP. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20: 3479-3483 (1992) https://doi.org/10.1093/nar/20.13.3479
  14. de Bruijn FJ. Use of repetitive (repetitive extragenic element and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187 (1992)
  15. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. BioI. 5: 25-40 (1994)
  16. Lupski JR, Weinstock GM. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174: 4525-4529 (1992) https://doi.org/10.1128/jb.174.14.4525-4529.1992
  17. Rivera IG, Chowdhury MAR, Huq A, Jacobs D, Martins MT, Colwell R. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139, and non-O1 strains. Appl. Environ. Microbiol. 61: 2898-2904 (1995)
  18. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823-6831 (1991) https://doi.org/10.1093/nar/19.24.6823
  19. Del Vecchio VG, Petroziello JM, Gress MJ, McCleskey FK, Melcher GP, Crouch HK, Lupski JR. Molecular genotyping of methicillin-resistant Staphylococcus aureus via fluorophoreenhanced repetitive-sequence PCR. J. Clin. Microbiol. 33: 21412144 (1995)
  20. Li WH, Simple method for constructing phylogenetic trees from distance matrices. Proc. Natl. Acad. Sci. USA 78: 1085-1089 (1981) https://doi.org/10.1073/pnas.78.2.1085
  21. Loubinoux J, Lozniewski A, Lion C, Garin D, Weber M, Le Faou AE. Value of enterobacterial repetitive intergenic consensus PCR for study of Pasteurella multocida strains isolated from mouths of dogs. J. Clin. Microbiol. 37: 2488-2492 (1999)
  22. Sander A, Ruess M, Bereswill S, Schuppler M, Steinbrueckner B. Comparision of different DNA fingerprinting technique for molecular typing of Bartonella henselae isolates. J. Clin. Microbiol, 36: 1973-2981 (1998)
  23. McLellan SL, Daniels AD, Salmore AK. Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Appl. Environ. Microbiol. 69: 2587-2594 (2003) https://doi.org/10.1128/AEM.69.5.2587-2594.2003
  24. Hahm BK, Maldonado Y, Schreiber E, Bhunia AK, Nakatsu CH. Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J. Microbiol. Methods. 53: 387-399 (2003) https://doi.org/10.1016/S0167-7012(02)00259-2
  25. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60: 2286-2295 (1994)
  26. Wong HC, Lin CH. Evaluation of typing of Vibrio parahaemolyticus by three PCR methods using specific primers. J. Clin. Microbiol. 39: 4233-4240 (2001) https://doi.org/10.1128/JCM.39.12.4233-4240.2001