DOI QR코드

DOI QR Code

Size Dependent Absorption Spectrum of ZnO Nanocrystals

  • Chang Ho Jung (Department of Electronic Engineering, Dankook University) ;
  • Wang Yongsheng (Institute of Optoelectronic Technology, Beijing Jiaotong University) ;
  • Suh Kwang-Jong (Department of Electrical and Electronic Engineering, Toyohashi University of Technology) ;
  • Son Chang-Sik (Department of Photonics, Silla University)
  • Published : 2005.07.01

Abstract

To investigate the dependences of the absorption spectrum and electronic structure properties on the ZnO nano-particle size, ZnO nanocrystals were synthesized by a sol-gel method. The absorption onset peak exhibits a systematic blue-shift with decreasing particle size due to the quantum confinement effect, as well as, with decreasing $Zn^{2+}$ concentration. The increase of particle size is mainly controlled by coarsening and aggregation step during the nucleation and growth of ZnO nano-particles. The onset absorption spectrum of ZnO colloids changes from 310 to 355 nm as $Zn^{2+}$ concentration increases from 0.01 to 0.1 mole. The average particle size as a function of aging- time can be determined from the absorption spectra. The freshly prepared nanocrystal size was about 2.8nm.

Keywords

References

  1. A. L. Rogach, A. Kornowski, M. Gao and A. Eychmller, J. Phys. Chem. B. 103, 3065 (1999) https://doi.org/10.1021/jp984833b
  2. C. A. Smith, H. W. H. Lee, V. J. Leppert and S. H. Risbud, Appl. Phys. Lett. 75, 1688 (1999) https://doi.org/10.1063/1.124834
  3. D. W. Bahnemann, C. Kormann and M. R. Hoffmann, J. Phys. Chem. 91, 3789 (1987) https://doi.org/10.1021/j100298a015
  4. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett. 70, 2230 (1997) https://doi.org/10.1063/1.118824
  5. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo and H. Koinuma, Appl. Phys. Lett. 72, 3270 (1998) https://doi.org/10.1063/1.121620
  6. S. Shionoya and W. M. Yen, Phosphor Handbook: CRC Press, Boca Raton, 255 (1999)
  7. B. O'Regan and M. Gratzel, Nature 353, 737 (1991) https://doi.org/10.1038/353737a0
  8. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991) https://doi.org/10.1021/ja00008a004
  9. Z. Hu, G. Oskam, R. L. Penn, N. Pesika and P. C. Searson, J. Phys. Chem. B 107, 3124 (2003) https://doi.org/10.1021/jp020580h
  10. E. M. Wong, J. E. Bonevich and P. C. Searson, J. Phys. Chem. B 102, 7770 (1998) https://doi.org/10.1021/jp982397n
  11. K. Hummer, Phys. Status Solidi 56B, 249 (1973) https://doi.org/10.1002/pssb.2220560124
  12. H. S. Nalwa, Handbook of Nanostructured Materials and Technology, Academic Press: London, 325-366 (2000)
  13. K. Yosuka, Phys. Rev. 38, 9797 (1988) https://doi.org/10.1103/PhysRevB.38.9797
  14. L. E. Brus, J. Phys. Chem. 80, 4403 (1984) https://doi.org/10.1063/1.447218
  15. S. Monticone, R. Tufeu and A. V. Kanaev, J. Phys. Chem. B 102, 2854 (1998) https://doi.org/10.1021/jp973425p
  16. S. Sakohara, M. Ishida and M. A. Anderson, J. Phys. Chem. B 102, 10169 (1998) https://doi.org/10.1021/jp982594m