DOI QR코드

DOI QR Code

Low-Temperature Thermoelectric Properties of Zn4Sb3 Prepared by Hot Pressing

열간압축 성형법으로 제조한 Zn4Sb3의 저온 열전특성

  • Park Jong-Bum (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Ur Soon-Chul (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Kim Il-Ho (Department of Materials Science and Engineering/ReSEM, Chungju National University)
  • 박종범 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 김일호 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터)
  • Published : 2005.07.01

Abstract

Single phase $Zn_4Sb_3$ with $98.5\%$ of theoretical density was successfully produced by direct hot pressing of elemental powders containing $1.2 at\%$ excess Zn for compensating the evaporation during the process. Temperature dependences of thermoelectric properties were investigated from 4 K to 300 K. Seebeck coefficient, electrical conductivity, thermal conductivity as well as thermoelectric figure of merit showed the discontinuity in variation at 242K, indicating the $\alpha-\beta$, phase transformation. Interestingly, it was found that lattice thermal conductivity by phonons is dominant in total thermal conductivity of $\alpha-\beta$. Therefore, it is expected that thermoelectric properties can be improved by reduction of lattice thermal conductivity inducing lattice scattering centers by doping and solid solution.

Keywords

References

  1. T. Caillat, J.-P. Fleurial and A. Borshchevsky, J. Phys. Chem. Solids, 58(7), 1119 (1997) https://doi.org/10.1016/S0022-3697(96)00228-4
  2. S.-C. Ur, I.-H. Kim and P. Nash, Mater. Lett., 58, 1232 (2004)
  3. H. W. Mayer, I. Mikhail, K. Schubert, J. Less Common Metals, 59, 43 (1978) https://doi.org/10.1016/0022-5088(78)90109-1
  4. M. Tapiero, S. Tarabichi J. G. Gies, C. Noguet, J. P. Zielinger, M. Joucla, J. L. Loison and M. Robino, Solar Energy Mater., 12, 257 (1985) https://doi.org/10.1016/0165-1633(85)90051-6
  5. T. Koyanagi, K. Hino, Y. Nagamoto, H. Yoshitake, K, Kishimoto, Proc. 16th Intl. Conf. Thermoelectrics, 463 (1997) https://doi.org/10.1109/ICT.1997.667186
  6. T. J. Zhu, X. B. Zhao, M. Yan, S. H. Hu, T. Li and B. C. Chou, Mater. Lett., 46(1), 44 (2000) https://doi.org/10.1016/S0167-577X(00)00140-3
  7. V. I. Pasarev, N.L. Kostur, Izv. Vyssh. Ucheb. Zaved. Fiz., 10, 34 (1967)
  8. T. Souma, G. Nakamoto, M. Kurisu, J. Alloys Comp., 340, 275 (2002) https://doi.org/10.1016/S0925-8388(02)00473-5
  9. S.-C. Ur, P. Nash and I.-H. Kim, J. Mater. Sci., 38(17) 3553 (2003) https://doi.org/10.1023/A:1025608926808
  10. S.-C. Ur, P. Nash and I.-H. Kim, Mater. Lett., 58, 2973 (2004)
  11. A. F. Ioffe, Sov. Phys. Solid State, 1, 141 (1959)