DOI QR코드

DOI QR Code

Synthesis of Hole Transport Materials for Organic Light Emitting Device

유기발광디바이스용 정공수송재료의 합성

  • Chung, Pyung-Jin (Dept. of Materials Science and Engineering Dankook University) ;
  • Cho, Min-Ju (Dept. of Materials Science and Engineering Dankook University)
  • 정평진 (단국대학교 신소재공학과) ;
  • 조민주 (단국대학교 신소재공학과)
  • Published : 2005.07.01

Abstract

This study was based on organic electroluminescence display. Especially, TPD and $\alpha-NPD$ for the hole transport materials were synthesized by Ullmann reaction. This reaction was conducted between 3­methylphenylamine, 1-naphthylamine and 4,4'-diiodobiphenyl in toluene containing CuCl catalyst and KOH base. The structural property of reaction products were analyzed by FT-IR, $^1H-NMR$ spectroscopy, and thermal stability, reactivity and PL property were analyzed by melting point, yield and emission spectrum, respectively. The photoluminescence spectra of a pure TPD and $\alpha-NPD$ were observed at approximately 416nm and 438nm respectively. In this study, it was known that the melting point, yield, PL properties of TPD and $\alpha-NPD$ were changed by substituent group of amines.

Keywords

References

  1. W. Helfrich and W. G. Schneider, Phy. Rev. Lett., 14, 229 (1965) https://doi.org/10.1103/PhysRevLett.14.229
  2. C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn, J. Appl. Phys., 27, L713 (1988) https://doi.org/10.1143/JJAP.27.L713
  3. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 38, 2042 (1962) https://doi.org/10.1063/1.1733929
  4. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  5. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L.Burn and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  6. J. Kido, H. Hayase, K. Hongawa, K. Nagai and K. Okuyama, Appl. Phys. Lett., 65, 212 (1994) https://doi.org/10.1063/1.112810
  7. D. U. Kim and T. Tsutsui, J. Appl. Phys., 80, 4785 (1996) https://doi.org/10.1063/1.363420
  8. Z. Yang, I. Sokolik and F. E. Karatz, Macromolecules, 26, 1188 (1993) https://doi.org/10.1021/ma00057a047
  9. A. Dodabalapur, Solid State Communications, 102, 259 (1997) https://doi.org/10.1016/S0038-1098(96)00714-4
  10. S. Tokito, T. Tsutsui and Y. Taga, J. Appl. Phys., 86, 2407 (1999) https://doi.org/10.1063/1.371068
  11. Y. Kijima, N. Asai and S. Tamura, Jpn. J. Appl. Phys., 38, 5274 (1999) https://doi.org/10.1143/JJAP.38.5274
  12. A. Yamamori, C. Adachi, T. Koyama and Y. Taniguchi, Appl. Phys. Lett., 72, 2147 (1998) https://doi.org/10.1063/1.121304
  13. C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett., 66, 2679 (1995) https://doi.org/10.1063/1.113123
  14. S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi and T. Tsutsui, Synth. Mat., 111-112, 331 (2000) https://doi.org/10.1016/S0379-6779(99)00358-6
  15. F. Ullmann et al., Chem. Ber., 36, 2382 (1903) https://doi.org/10.1002/cber.190303602174
  16. H. Bruce Goodbrand and Nan-Xing Hu, J. Org. Chem., 64, 670 (1999) https://doi.org/10.1021/jo981804o
  17. T. P. Bender, J. F. Graham and J. M. Duff, Chem. Mater., 13, 4105 (2001) https://doi.org/10.1021/cm010281p