DOI QR코드

DOI QR Code

Effects of Al2O3 on the Piezoelectric Properties of Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics

Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 세라믹스의 압전특성에 미치는 Al2O3의 영향

  • Kim Mi-Jung (Department of Materials Sci. & Eng./ReSEM, Chungju National University) ;
  • Kim Jae-Chang (Department of Materials Development, Corea Electronics Corporation(CEC)) ;
  • Kim Young-Min (Department of Materials Development, Corea Electronics Corporation(CEC)) ;
  • Ur Soon-Chul (Department of Materials Sci. & Eng./ReSEM, Chungju National University) ;
  • Kim Il-Ho (Department of Materials Sci. & Eng./ReSEM, Chungju National University)
  • 김미정 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 김재창 (고려전자㈜ 소재개발과) ;
  • 김영민 (고려전자㈜ 소재개발과) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 김일호 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터)
  • Published : 2005.07.01

Abstract

Piezoelectric properties of $Pb(Mn_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ ceramics were investigated with $Al_2O_3$ content $(0.0-1.0 wt\%)$. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with $Al_2O_3$, indicating the MPB (morphotropic phase boundary) composition of tetragonal structures. The highest sintered density of $7.8 g/cm^3$ was obtained for $0.2wt\%\;Al_2O_3-doped$ specimen. Grain size increased by doping $Al_2O_3$ up to $0.3 wt\%$, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping $Al_2O_3$ up to $0.2wt\%$, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in $O^{2-}$ ion sites and the substitution of $Al^{3+}$ ions.

Keywords

References

  1. S. Robert, Phys. Rev., 71, 890 (1947) https://doi.org/10.1103/PhysRev.71.890
  2. B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys., 25(26), 809 (1954) https://doi.org/10.1063/1.1721741
  3. B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press Inc., London & New York(1971)
  4. R. F Zhang, J. Ma, L. B. Kong, Y. Z. Chen and T. S. Zhang, Mater. Lett., 55(6), 388 (2002) https://doi.org/10.1016/S0167-577X(02)00398-1
  5. C. O. Paiva-Santos, C. F. Oliveira, W. C. Las, M. A. Zaghete, J. A. Varela and M. Silense, Mater. Res. Bull., 35(1), 15 (2000) https://doi.org/10.1016/S0025-5408(00)00192-6
  6. Z. Brankavi, G. Brankovic, C. Jovalekic, Y. Maniette, M. Cilense and J. A. Varela, Mater. Sci. Eng., A.345(1-2), 243 (2003) https://doi.org/10.1016/S0921-5093(02)00475-6
  7. S. Y. Chu, T. Y. Chen and I. T. Tsai, Mater. Lett., 58(5), 752 (2004) https://doi.org/10.1016/j.matlet.2003.07.004
  8. W. L. Zhang, Y. G. Wang, S. B. Yue and P. L. Zhang, Solid State Comm., 90(6), 383 (1994) https://doi.org/10.1016/0038-1098(94)90804-4
  9. N. Wakiya, B. H. Kim, K. Shinozaki, N. Mizutani, J. Ceram. Soc. of Jpn., 102(6), 612 (1994) https://doi.org/10.2109/jcersj.102.612
  10. ASTM C373-72, Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity of fired whiteware products (1994)
  11. IRE Standards, Proc. IRE, 49, 1161 (1961) https://doi.org/10.1109/JRPROC.1961.287860
  12. Y. J. Son, D. Y. Hwang, J. C. Kim, K. W. Cho, Y. M. Kim, S. C. Ur and I. H. Kim, Kor. J. Mater. Res., 14(11), 764 (2004) https://doi.org/10.3740/MRSK.2004.14.11.764
  13. R. B. Atkim and R. M. Fulrath, J. Am. Ceram. Soc, 54(5), 265 (1971) https://doi.org/10.1111/j.1151-2916.1971.tb12286.x
  14. F. Kulcsar, J. Am. Ceram. Soc., 42(7), 343 (1959) https://doi.org/10.1111/j.1151-2916.1959.tb14321.x

Cited by

  1. BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics vol.22, pp.1, 2012, https://doi.org/10.3740/MRSK.2012.22.1.035