케나프의 물과 효소를 이용한 이중 레팅과 면섬유가에 관한 연구

이미경 · 이해자† · 유해자* · 한영숙**

한국교원대학교 가정교육과, *서울대학교 의류직물학과, **신성여자고등학교

The Double Retting Using Water and Enzyme & Cottonizing of Kenaf

Mikyung Lee · Hyeja Lee† · Hyeja Yoo* · Youngsook Han**

Dept. of Home Economics Edu., Korea National University of Education
*Dept. of Clothing & Textiles, Seowon University
**Shinsung Girls High School, Cheju
(2004. 12. 28. 접수)

Abstract

Kenaf basts were double retted by using water and enzyme. The best conditions were enzyme concentration 0.125% and 1 day treatment at 50°C, 4 days treatment at 20°C. It was showed that the double retting could be more economical and eco-friendly than just water retting or enzyme retting. Kenaf fibers have been cottonized by removing lignin and hemicellulose partially. In order to cottonize kenaf fiber, lignin of kenaf fibers were removed by sodium chlorite and then hemicellulose of kenaf fibers were removed by sodium hydroxide. The cottonizing phenomenon of kenaf fibers were was confirmed in transversal and longitudinal photograph of SEM. The tensile strength and crystallinity of cottonized fiber were investigated. The tensile strength and crystallinity were lower as the lignin and hemicellulose of kenaf fibers were less.

Key words: Double retting, Cottonizing, Lignin, Hemicellulose, Crystallinity; 이중 레팅, 면섬유가, 리그난, 헤미셀룰로오스, 결정성

I. 서론

20세기 중반 캐도리스에 의해 나일론이 개발된 이래 현대인들은 편리하고 풍요로운 의류생활을 해왔 다. 그러나 초 번세기까지 지나지 않았던 십유제품 의 폐기물로 인하여 환경오염이 심각하게 된다는 점을 인식하기에 이르러 환경친화적인 십유소재로 다시 눈을 돌리게 되었다. 십유제품의 환경친화성을 높이기 위해서는 1990년대 초의 리오셀과 같은 환경 친화적인 소재의 개발과 같이 대체 천연 섬유소재를 개발해야 한다.

케나프는 농업 분야에서는 1960년대 초부터 환경 친화적 대체 작물로 개발되어 사료로 사용하기 시작 하였으나(박종문, 1964) 섬유분야에서는 최근 개발되 기 시작하였다. 생분해성이 있는 경제적이고 친환경 작물로서 섬유작물로서도 이용할 가치가 있다고 보 고되었다(한영숙 외, 2002).

현재까지 캐나프의 재배, 캐나프 인과부의 레팅, 캐나프 섬유의 방직(이혜자, 2004) 등 캐나프 섬유에 대한 이론적인 연구는 많이 진행되었으나 생산된 케
나프성유는 아직까지는 거칠어 고급 의류 제품화에 미치는 영향이외로 캐나프에 대한 연구에서도 흔히, 부직포 등 이론적인 연구에 미치는 영향이 있으니 아직 고급 의류 제품화에 대한 시도는 일정하고 있지 않다. 고급성유로 가기 위해서는 레딩부터 좋은 성유를 얻어야 한다.

캐나프 성유는 캐나프 인피부를 부드럽게 만들 레딩(한영숙 외, 2002), 화학적 레딩(이혜자 외, 2003; Morrison et al., 1996; Ramaswamy, et al., 1995), 효소 레딩(이혜자 외, 2003) 등에 의해 얻을 수 있다. 물 레딩은 우수한 화학적 레딩과 마찬가지로 색상의 계열 성유를 얻을 수 있으나 품질 기준으로 10일 이상 치료하여야 하므로 수질을 잘 유지하고 넓은 면적을 필요로 한다. 화학적 레딩은 성유가 갈색 색상의 특징이 지속되고 다소 길محافظ면 신속하고 간편하게 대량생산하기에 유리한 방법이다. 효소 레딩은 친환경적이면서도 품질이 좋은 성유를 얻을 수 있고 본체 속도와 경제성을 조절하기 쉽지만 효소의 값이 비싼 것이 단점이다. 따라서 물 레딩과 효소 레딩을 결합하여 검정이 좋은 성유를 얻으면서 효소 레딩을 통해 시간을 단축시키고 생산성이 줄일 수 있는 이중 레딩을 시도해 보고자 하였다.

캐나프를 고급성유로 개발하기 위해서는 두 번째로 캐나프 성유의 유연하게 하는 면성유화가 필요하며 이 면성유화가 이루어지면 모든 성유화 훈련이 가능하다. 편성물, 틀직 등 다양한 분야의 의류 제품을 제조할 수 있을 뿐만 아니라 복분, 부직포 등의 비의류 제품의 영역까지도 광범위하게 제품화 할 수 있다. 이러한 연구 단계를 거쳐 고급한 베이직, 푸제, 큰, 중문, 겹개 등에 부분적으로 쓰던 영역을 캐나프 성유의 의류 제품, 부직포, 로스 등의 고부가가치 제품으로 제조하여 그 활용 범위를 확대할 수 있을 것이다. 그러나 천연성유의 외모를 수입에 의존하고 있는 우리나라의 경제적인 효과도 있을 것으로 여겨져 성유제품의 고급화가 요구되고 있다. 따라서 캐나프 성유의 면성유화는 이러한 목적에 필요한 연구이다.

레딩을 거친 캐나프 성유는 인피성유의 특성상 리그린 등의 비선폴로스 성유로 많이 거칠기 때문에 캐나프 성유 번들은 부드럽고 유연하고 면성유화 하여 면면감적기로 방직할 수 있어야 한다. 우리나라에서는 소량의 모시나 상지가 수지로 일부 지방에서 방직하고 있는 설정이기에 아카마성유의 기계적 방직에 관한 자료나 연구가 부족하다. 외국에서도 아마 성유를 효소 레딩한 후 자르고 마감을 이용해 세심화 하여 면성유화하거나(Epps et al., 2001), 대마성유를 이용해 중기로 압력을 가해 분출시킴으로써 면성유화하는 것(Nebel, 1995)과 같이 마성유를 면성유기 기준으로 방직할 수 있는 조건과 방법에 관련된 연구를 하고 있다. 우리나라에서 카나프 성유를 수작업으로 면성유화하여 방직한 본 연구(이혜자 외, 2004)에 의하면 제조된 성유가 가릴리고 네프(nep)가 많은 것으로 보고되었다. 따라서 보다 유연하고 면성유화가 잘 되게하기 위해서는 면성유화를 할 필요가 있다. 유연성과 면성유화는 캐나프 성유의 퍼선폴로스 성유에 리그린과 헤미선폴로스를 조절함으로써 가능한데 리그린과 헤미선폴로스를 완전히 제거할 경우 성유상태가 아닌 필름화되어 슬립률이 높기 때문에 성유 상이 저지니게 되는 양을 보이므로 면과 유사한 성유상태로 유연성을 갖게 되는 조건을 찾아보아야 한다.

본 연구는 캐나프 성유 방직에 요구되는 유연성을 얻기 위해 물 레딩과 효소 레딩을 병행하는 이중 레딩을 시도하여 가장 잘 좋은 성유를 얻고자 하였다. 그리고 캐나프 성유는 비선폴로스 성유로 많이 방직에 많은 어려움이 있으므로 리그린과 헤미선폴로스를 제거하는 방법을 이용하여 면성유화 조건을 찾는 것을 목적으로 하였다. 면성유화는 인장 강도, 유연성, 단성유의 수도, SEM 관찰, 성유의 결정화도와 열성향에 의하여 평가하였다.

II. 실험

1. 시료준비

캐나프는 제주도와 전주에서 제재하였고 100-120일 후에 수확하여 흙기의 인피부(bark)와 목질부(core)를 분리한 뒤 인피부를 수거하고 건조시켜 보관한 후 시료로 사용하였다.

2. 레딩

캐나프 인피부의 0.85% Triton X-100 수용액에 10분간 침접한 후 여과한다. 캐나프 레딩기로부터 성유를 분리하기 위해 물 레딩과 효소 레딩을 병행하여 실시하는 데, 이때 사용하는 효소는 pectinase이다. 또한, 효소의 활동을 늘기 위해 커플 2가 이온을 제거하는 칼리데터로서 1%의 EDTA (Ethylendiaminetetraaceticacid)를

- 939 -
Table 1. 3x3 Latin square design experiment plan

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>C1</td>
<td>C3</td>
</tr>
<tr>
<td>B</td>
<td>A2</td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>C</td>
<td>A3</td>
<td>C3</td>
<td>C2</td>
</tr>
</tbody>
</table>

A1: Enzyme 0.063%
A2: Enzyme 0.125%
A3: Enzyme 0.25%
B1: Temperature 50-50°C
B2: Temperature 50-30°C
B3: Temperature 50-20°C
C1: Date 1 day
C2: Date 3 days
C3: Date 5 days

사용하였다. 레밍이 말난 후에는 환물과 뜨거운 물로 여러 번 수세하여 효소의 작용 익제하였으며 수세한 시간은 24시간 자연 건조시켰다.

경제적이면서도 환경친화적인 레밍 효과를 얻어내기 위해 각각 효소의 농도와 온도, 침지 날짜의 3원 배치 실험을 하였다. 적은 실험 횟수로 주 효과에 대한 정보를 얻고자 래턴방법(박성현, 1994)으로 다음과 같이 실험 설계를 하였다.

케나프의 효소 레밍이 있어서 효소의 농도는 0.125%만으로도 높은 레밍 효과를 나타내었다는 연구결과(이 혼 외, 2003)의 결과에 따라 본 실험에서의 효소 농도는 0.125%를 기준으로 그 위, 아래의 농도를 실험 인자로 정하였다. 또한, 레밍 과정이 이루어지는 동안 수용액의 처리 온도가 높지 않으면 다소 레밍 효과가 증가하는 경향이 있으나 대체로 20°C~60°C의 처리 온도 사이에서는 레밍 효과에 큰 차이가 없는 것으로 나타났기에 시료를 탐이 후 24시간 동안 50°C를 유지시키고, 그 후에는 각각 20°C, 30°C, 50°C로 온도를 조정하였다. 본래 레밍이 이루어지면 수용액에 10여일 이상 점착되기 때문에 물래의 작용을 익제하는 것이나, 본 실험은 물 레밍과 효소 레밍을 병행하여 실시하는 것이므로 효소를 점착하면서 침지 날짜는 1일, 3일, 5일로 정하여 효소의 작용과 함께 침지 시간에 따른 물 레밍의 효과를 같이 살펴보았다.

위의 <Table 1>에서 살펴보면 어느 일 또는 어느 행으로도 균일하게 1, 2, 3이 가변한 나타나므로 9회의 실험조건은 효소 농도와 온도, 침지 날짜의 각 인자 수준에서 동일한 횟수의 실험이 이루어지도록 구성되는 것이다. 이를 회계화하면 다음과 같다.

효소 농도, 온도, 침지 날짜의 세 가지 요인에서 최적의 조건을 찾기 위해 위의 <Table 2>에 나타난 9가지 경우의 실험을 실시한 후 가정교육과 대학원생과 교수 18명이 각각에 대하여 5등급(매우 좋음), 4등급(좋음), 3등급(보통), 2등급(나쁨), 1등급(어두운)의 5 단계로 주관적으로 평가하였다. 평가한 결과를 SPSS WIN 10.0 Program을 이용하여 일반량 분산분석을 실시하였다.

3. 면성유화

면성유화는 인피면성유의 방적 과정을 이루는 중요한 부분으로 면성유와 유사하게(cotton-like) 섬유질이와 적경, 강도 등을 조절하는 과정이다. 면성유와 유사한 형태를 갖추는 이유는 면성적기를 이용해 방적, 제직, 훈방 등을 하기 때문이다. 일반적으로 인피면성유의 면성유화는 비터(beaters), 타마기 등으로 불리는 도구 두드리는 것, 공기를 이용해 불어주는 방법(Epps et al., 2001), 고온의 증기를 압력에 이용해 분출시키며 세심화하는 방법(Nebel, 1995), 케나프를 레밍한 후 섬유질이면성유와 비슷한 길이의 3-4cm 내외로 자르고 수작업으로 세심화한 방법(이혜자 외, 2004) 등이 있었다. 주로 기계적 면성유화하고 할 수 있으나 본 연구에서는 리그닌과 헤플로로스를 제거하는 화학적 방법으로 면성유화를 하였다.

1) 리그닌 제거
가장 좋은 조건의 물 레밍과 효소 레밍을 병행하여 얻은 케나프의 리그닌을 제거하기 위하여 0.7%의 아황산나설탕(NaClO)<sub>3</sub> 용액으로 pH 4, 액비 30 : 1, 100 ℃에서 각각 60분, 90분, 120분 동안 각각 처리한 후 수세하였다. 다시 2%의 아황산나설탕(NaH<sub>2</sub>SO<sub>4</sub>) 용액에서 액비 20 : 1, 25°C로 10분 간 침지한 후 반복하여

Table 2. Experiment plan of water retting & Enzyme retting

<table>
<thead>
<tr>
<th></th>
<th>A1B1C1</th>
<th>A1B2C2</th>
<th>A1B3C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1C2</td>
<td>A2B2C3</td>
<td>A2B3C1</td>
<td></td>
</tr>
<tr>
<td>A3B1C3</td>
<td>A3B2C1</td>
<td>A3B3C2</td>
<td></td>
</tr>
</tbody>
</table>

1) A1B1C1 : E 0.063% T 50-50°C D 1
2) A1B2C2 : E 0.063% T 50-30°C D 3
3) A1B3C3 : E 0.063% T 50-20°C D 5
4) A2B1C2 : E 0.125% T 50-50°C D 3
5) A2B2C3 : E 0.125% T 50-30°C D 5
6) A2B3C1 : E 0.125% T 50-20°C D 1
7) A3B1C3 : E 0.25% T 50-50°C D 5
8) A3B2C1 : E 0.25% T 50-30°C D 1
9) A3B3C2 : E 0.25% T 50-20°C D 3
수해하였다. 아염소산나트륨용액의 처리 시간에 따른 캐나프의 무게 감소율을 살펴보기 위하여 처리 전과 후에 각각 95℃ 오븐에서 60분 동안 건조시켰으며 다음과 같은 식으로 무게 감소율을 계산하여 비교하였다.

\[
\text{Weight loss} \% = \frac{A-B}{A} \times 100
\]

여기서 A : weight of kenaf before NaClO₂ treatment
B : weight of kenaf after NaClO₂ treatment

아염소산나트륨용액의 처리 시간에 따른 캐나프의 생채를 보기 위하여 색도는 분광측색계(JS555 Co., Japan)을 이용하여 환색표준기준으로 ∆E 값을 측정하였다.

인피 섭유의 리그드율을 계기하기 위해서는 일반적으로 0.7%의 아염소산나트륨용액 비피(pH 4)에서 100℃에서 120분 이상 처리한(권해용 외, 1997; 이혜자 외, 2003; Abou-Zeid et al., 1984) 아염소산나트륨용액의 처리 시간에 따른 캐나프의 무게 감소율, 인장 강도의 저하 정도, 색도의 차이 등을 살펴보고 목적의 면실유화 조건을 찾기 위하여 본 연구에서는 0.7%의 아염소산나트륨용액 비피(pH 4)에서, 처리 시간을 60분, 90분, 120분의 조건으로 실험을 실시하였다.

2) 헤미셀룰로오스 제거

리그드율을 제거한 캐나프생유에 대해 헤미셀룰로오스를 부분적으로 제거하기 위해 수산나트륨용액의 농도와 중합 시간으로 <Table 3>과 같이 실험을 실시하였다.

4. 면실유화한 캐나프 섭유의 특성 분석

캐나프 섭유의 인장 강도는 리그드율을 제거한 후 헤미셀룰로오스를 제거한 후 각각 Fiber Bundle Tenacity로 측정하였으며 같은 중량(0.03g), 같은 길이(140mm)의 변들 상태에서 곡기가 불균일함을 고려하여 단위섬도(d)를 대신하여 단위무게(g/d)를 사용하였다. 각각 5회씩 측정하여 시료 무게의 평균값을 구하고 절단 시 하중의 평균값을 구한 뒤 다음식(A)과 같이 단위무게(g/d)당 절단하중(gf)의 평균값으로 환산하여 캐나프 섭유의 변들 강도를 비교하였다. 인장시험기(Instron 4302 CRE Type, USA)를 이용하여 Load cell: 10 Newton, Speed: 20mm/min, Gauger Length: 100mm의 조건에서 KS K 0520 Test Method을 참고로 측정하였다.

\[
\text{절단 강도} \left(\text{gf/g} \right) = \frac{\text{절단 시 평균하중(gf)}}{\text{시료의 평균무게(g)}} \times \text{식 (A)}
\]

캐나프의 섭유장은 면실유화 정도를 평가하기 위하여 작업 시료중량(0.01g)의 단섬유를 분리해낸 후 단섬유의 깃수와 길이를 모두 측정하여 평균값을 구하였다.

캐나프의 섭유의 형태학적 특성과 면실유화 상태는 Scanning Electron Microscope(HITACHI S-2500C)를 사용하여 100, 150배율로 단면과 측면을 비교 관찰하였다.

캐나프 섭유의 결정 화도는 X-Ray 회절 분석(XDS-2000, Scintag)을 사용하여 리그드율 제거한 시료와 헤미셀룰로오스 제거 정도에 따른 시료의 X-Ray 회절 곡선을 얻어 이들로부터 결정 화도를 계산하였다.

### III. 결과 및 고찰

1. 레팅

각 레팅을 상호보완하고 그 효과를 증가시키기 위하여 캐나프의 인피부에 레팅과 효소 레팅을 병행한 실험결과에 대해 일반량 분석방식을 하여 개체 간 효과를 검정하였을 때 유의한 차이는 없는 것으로 나타났다. 그러나, 추정된 주변 평균으로 효소 농도, 온
Table 4. Retting effects of the kenaf fiber according to various enzyme concentrations (%), soaking temperatures (°C), and soaking times (days)

<table>
<thead>
<tr>
<th>Enzyme Concentration</th>
<th>Softness</th>
<th>Purity</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDO</td>
<td>A1</td>
<td>3.110</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>3.427</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>2.870</td>
<td>607</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soaking Temperature</th>
<th>Softness</th>
<th>Purity</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDO</td>
<td>B1</td>
<td>2.927</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>3.203</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>3.277</td>
<td>607</td>
</tr>
</tbody>
</table>

Table 5. The weight loss and kenaf

<table>
<thead>
<tr>
<th>Treatment Time(min.)</th>
<th>NaClO2</th>
<th>Weight loss(%)</th>
<th>Fiber bundle tenacity(gf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>-</td>
<td>1177.3</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>7.6</td>
<td>1049.9</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>9.8</td>
<td>1006.5</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>13.0</td>
<td>939.0</td>
<td></td>
</tr>
</tbody>
</table>
해자 외, 2003)의 결과와도 일치하는 것이며 아압소
산화수매주염에서 120분 처리함으로써 대부분의 리
그닝이 제거되었음을 알 수 있다.
아압소산화수매주염의 처리 시간에 따른 인장 강도
는 단선유가 아닌 반복 실험에서 이루어졌지만 처리
하기 전의 원심유가 1177.3gf인 것에 비해 60분 처리
한 것이 1049.9gf, 120분 처리한 것이 939.0gf로 시간
이 길수록 인장 강도가 낮아져서 캐나프 섬유의 절기
가 많아 악화되었음을 알 수 있다.
(2) 헤미셀룰로오스 제거에 따른 인장 강도
아압소산화수매주염으로 리그닝을 일부 제거하고
이 시료를 다시 수산화수매주염으로 처리하면 캐
나프 섬유 세포 사이의 헤미셀룰로오스가 제거된다.
수산화수매주염에서 헤미셀룰로오스를 완전히 제
거하면 폐화화 되어 손처럼 물처럼이나 섬유만이 지
나치게 쩔어져 방적하기 어렵게 된다(이해자 외, 2004).
따라서 완전 폐화화가 되지 않는 상태를 만들기 위해
서는 캐나프 섬유의 강도를 저하시키고 부드럽고 유
연하게 할 수 있는 조건을 찾아야 한다.
아압소산화수매주염에서의 처리 시간이 120분인 원
심유를 수산화수매주염의 농도와 절기 시간을 달리
하여 헤미셀룰로오스를 부분적으로 제거하여 강도를
측정한 결과는 <Table 6>에 나타났다. 수산화수매주
염의 농도가 5%로 저 농도인 때에는 5분 절기한 시료
의 인장 강도가 754.3gf, 20분 절기한 시료가 763.0gf로
절기 시간의 길이에 상관없이 인장 강도에서 유의한
차이를 보이지 않았다. 그러나 수산화수매주염의
농도를 10%로 높였을 때는 5% 농도와 비교하긴 반반적
으로 인장 강도가 많이 악화된 상태로서 5분 절기
한 시료가 502.5gf이고 20분 절기한 시료가 281.0gf로
상대적으로 시간 효과가 크게 나타나고 있었다. 절기
시간이 5분씩 길어질수록 절단으로 악화되면서 인장
강도의 변화에 유의한 차이(p<0.05)가 있음을 알 수 있
다. 수산화수매주염의 농도 15%로 더욱 증가시키면
5분 절기한 시료 483.3gf, 10분 절기한 시료 240.5gf, 15
분 절기한 시료 197.7gf, 20분 절기한 시료 181.1gf로
절기 시간에 따라 큰 폭으로 줄어들면서 인장 강도의
변화에 매우 유의한 차이(p<0.001)가 있음을 알 수 있다.
또한 수산화수매주염의 농도 10%에서 10분 절기한
시료와 수산화수매주염 15%에서 5분 절기한 시료의
인장 강도 결과가 유사하고, 10%에서 20분 절기한 시
료와 15%에서 10분 절기한 시료의 인장 강도 결과가
유사하였다. 이는 농도와 절기 시간은 상호보완적인
관계에 있음을 나타내는 결과로서 농도와 절기 시간의
적절한 배합을 통해 여러 가지 캐나프 섬유 종류의
요소를 찾아 병행을 보여주는 결과라 할 수 있다.
인피섬유를 방적할 때 면섬유 기준으로 작업하는
경우에 있어서는 <Epps et al., 2001; Nebel, 1995> 국
내에서는 대부분의 마질을 제조가 수작업으로 이루어
지고 있고 그 외에는 대부분 수작업이 있어 마질
섬유를 방적할 수 있는 기기와 설비가 미흡한 상태이다.
따라서 인피섬유인 캐나프를 방적하기 위해 면섬유
와 유사한 상태로 면방적기를 통과할 수 있는 조건
을 찾는 것은 국내 제거 캐나프의 방적 가능성을 높
일 수 있을 뿐 아니라 대부분 수압에 의존하는 마질
섬유를 보완할 수 있는 새로운 형태 소재 활용의 기초
를 닦는 의미 있는 일이 될 것이다.
2) 섬유장
캐나프/레위의 온바닥층 제조 연구 (이해자 외, 2004)에서는 캐나프를 방적하기 위하여 면섬유의 섬
유장(2-3cm)과 유사하도록 수작업으로 풀어 섬유화
하였으나 소변 공정에서 많은 손실과 nep이 발생하
였고 균일하지 않은 것으로 밝혀졌다. 이에 본 연구

<table>
<thead>
<tr>
<th>Soaking time (min.)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>754.3</td>
<td>810.5</td>
<td>760.3</td>
<td>763.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>(192.8)</td>
<td>(190.4)</td>
<td>(184.4)</td>
<td>(136.1)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>502.5</td>
<td>441.7</td>
<td>293.0</td>
<td>281.0</td>
<td>5.7**</td>
</tr>
<tr>
<td></td>
<td>(76.9)</td>
<td>(66.2)</td>
<td>(109.0)</td>
<td>(141.8)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>483.3</td>
<td>240.5</td>
<td>197.7</td>
<td>181.1</td>
<td>12.1***</td>
</tr>
<tr>
<td></td>
<td>(106.4)</td>
<td>(106.2)</td>
<td>(59.9)</td>
<td>(83.7)</td>
<td></td>
</tr>
</tbody>
</table>

**p<0.05, ***p<0.001
에에서는 화학적 면섬유화로서 수작업 시의 문제점을 개선하여 보다 나은 캐나프의 세성화 조건을 찾고자 하였다. 섬유장은 캐나프의 방직 과정 중 변형적기를 통과할 수 있는 중요한 조건이 되므로 면과 유사한 길이와 상태가 되는 조건을 알아보았다. 수산화나트륨용액의 농도와 첨가 시간에 따른 캐나프의 단섬유 개수와 섬유장을 살펴보았을 때 결과는 (Fig. 1, 2)와 같다.

섬유장은 수산화나트륨용액 농도 5%에서 5분 침지한 시료의 섬유장이 6.76cm였으며 침지 시간이 길어질수록 섬유장 길이가 점점 줄어들어서 20분 침지한 시료가 약 3.65cm로 3cm-4cm 범위에 있음을 확인할 수 있었다. 수산화나트륨용액의 농도 10%에서는 처리 시간에 따라 4.10cm-2.82cm로 나타나 섬유장의 섬유장과 흡사했다. 또한 수산화나트륨용액 15%의 농도에서는 3.72cm-2.67cm로 침지 시간이 길어짐에 따라 점차적으로 섬유장이 줄어 면섬유장의 범위인 2-3cm와 유사하였다.

결과적으로 면섬유의 유사한 길이인 3cm 이내의 섬유장을 나타낸 조건을 살펴보면 수산화나트륨용액의 농도 10%에서 15분, 20분이 각각 2.90cm와 2.81cm로 나타났고, 15% 농도에서 15분, 20분이 각각 2.79cm와 2.68cm로 나타나 이들이 캐나프 면섬유화에 적합한 농도와 시간 조건이라고 할 수 있다.

한편, 수산화나트륨용액의 농도를 20% 정도로 더욱 높이거나 침지 시간을 30분 이상 두었을 때 섬유장이 2cm 이상으로 길어지거나 일부분이 솜 형태로 몽쳐서 폐포가 이루어졌음을 확인하였다. 또한 이들 소산나트륨용액 처리 시간은 4시간으로 수산화나트륨용액 17.5%에서 45분 침지하였을 때에는 모두 섬유가 줄어드는 속도로 몽쳐져 있었다. 이 때의 섬유장은 1cm 이하로 해미셀룰로오스가 제거되면서 세성화가 이루어진다고 볼 수 있다.

단섬유의 개수는 수산화나트륨용액 5% 농도에서 5분 침지한 시료에서 24개, 20분 침지한 시료에서 65개가 분리되면서 침지 시간이 길어질수록 단섬유의 개수가 큰 폭으로 빨라지는 것을 알 수 있다. 수산화나트륨용액 10% 농도에서는 5분 침지한 시료에서 38개, 20분 침지한 시료에서 77개가 분리되었다. 15% 농도에서는 5분, 10분, 20분 침지한 시료에서 각각 58개, 74개, 81개, 84개의 단섬유가 분리되면서 전체적으로 단섬유가 많이 분리되는 것을 확인하였다(Fig. 2). 이러한 결과는 수산화나트륨용액의 농도가 증가하고 침지 시간이 길어지면서 캐나프의 세성화가 향상되고 있음을 나타내는 것이라 할 수 있다. 그리고 수산화나트륨용액의 농도 10%, 15분 침지한 시료에서 무려 96개의 가장 많은 단섬유가 분리된 것은 예상 밖의 일이었다. 이는 캐나프 인피부를 얇고 두꺼운 부분과 상부의 연한 부분을 구분하지 않고 심화 실험으로써 일반적이지 않은 결과를 나타낸 것으로 생각되며 앞으로 연구해야 할 과제 중의 하나로서 캐나프 증기의 부위별로 혼란이나 먼저추출 효과를 비교하는 것도 연구해야 할 과제 중의 하나이다.

3) SEM 관찰

캐나프의 면섬유화에 의해 섬유의 형태학적 특성을 어떤 변화가 있었는지 알아보고자 아열소산나트

Fig. 1. The fiber length of kenaf staple fibers after NaOH treatment

Fig. 2. The numbers of kenaf staple fibers after NaOH treatment
플루오린에서 120분 처리한 원섬유를 가지고 수산화나트륨용액의 농도와 침지 시간을 달리시킨 시료를 SEM으로 관찰하였다. 수산화나트륨용액의 농도 15%에서 각각 5분, 20분 침지 시트의 단면과 측면을 원 섬유와 비교하면서 시간에 따른 면섬유화의 정도와 효과 등을 살펴본 결과의 다음 <Fig. 3>와 같다.

SEM 관찰 결과 (a)와 (d)에 보이는 원도의 단면과 측면에서 모든 섬유가 다발로 분지 있는 모습을 확인 할 수 있다. 아염소산나트륨용액의 처리 과정을 통해 빼앗긴 리그닌은 일부 제거되었으나 섬유 세포 사이에 있는 헤미셀룰로오스는 남아서 섬유들을 결합시키고 있는 모습임을 알 수 있다. 그러나 수산화나트륨용액 15% 농도에서 각각 5분, 20분 침지한 섬 유의 단면 (b)와 (c), 측면 (e)와 (f)를 살펴보면 단단 하 결합되어 있던 섬유조직이 사서히 풀어지는 과정 을 알 수 있으며, 20분 침지한 섬유의 단면 (c)와 측 면 (f)는 섬유가 각각이 많이 풀어지고 섬유화가 많 이 진행되었음을 나타내고 있다. 수 산화나트륨용액의 농도 15%에서 침지한 시간이 길어질수록 헤미셀룰로오스가 점점 제거되면서 캐나프가 면섬유화 되는 과정을 확인 할 수 있었다.

4) 결정화도
수산화나트륨용액의 농도와 침지 시간별로 면섬유화한 캐나프 시료의 결정 화도를 나타낸 <Table 7>을 보면 수산화나트륨용액의 처리 농도에 따라 결정화도가 수산화나트륨용액의 농도 10%에서는 89.21%, 15% 농도에서는 78.37%로 저하되었다. 수산화나트륨용액 15% 농도에서는 침지 시간에 따라 5분, 10분, 15분은 각각 77.02%, 78.37%, 79.24%로 비슷하다가 20분 침지한 것으로는 55.37%로 결정화도가 저하되는 모습을 보였다.

이는 수산화나트륨용액의 농도와 침지 시간에 따라 결정 구조가 바뀌지 않으나 결정 원영의 파괴가 일어나다고 생각된다. 5% 수산화나트륨 농도에서는 10분 침지하여도 결정화도 큰 변화가 없으나 15% 농도에서 10분 침지하면 약간 저하되며 15% 농도에서 5분 침지에서는 77.02%로, 20분 침지에서는 55.37%가
지 저하될을 알 수 있다. 결정 화도가 저하되는 만큼 단섬유의 개수가 43~84로 점점 늘어났으며 섬유장은 5.35cm에서 2.67cm로 줄어졌다.

### IV. 결 론

본 연구에서는 대부분 수입에 의존하고 있는 아직 몫을 대체할 수 있는 천연 소재 적용 및 부직포, 종이로서의 사용 가능성을 알아보기 위하여 캐나프를 레깅하고 섬유화하여 방직하기 위하여 면섬유와 하기 위한 조건을 찾고자 하였다. 이를 위해 돌 레깅과 효소 레깅을 병행함으로써 친환경적이면서도 경제적인 레깅 조건을 찾았고, 다시 아열소난태름용액과 수산화나트륨용액의 처리 시간, 농도, 칠지 시간에 따라 가장 면과 유사한 상태를 나타내는 조건, 즉 방직할 수 있는 조건을 찾고자 하였으며 그 결과 다음과 같은 결론을 얻었다.

1. 캐나프의 돌 레깅과 효소 레깅의 아열 레깅 조건은 효소 농도 0.125%, 칠지 온도 50°C에서 하루, 20°C에서 나흘동안 닮금으로써 총 칠지 날짜가 5일 이 되는 조건이 적절하였다. 효소 농도를 높이거나 칠지 온도를 높이는 등의 다른 요인보다 돌 레깅과 병행함으로써 비교적 저 농도의 효소와 절은 조건에서도 레깅 효과를 높일 수 있음을 확인하였다.

2. 캐나프의 강도를 약화시키는 부드럽게 하여 효과적으로 섬유화하는 조건을 찾기 위해 아열소난태름용액으로 120분 처리된 원섬유를 가지고 수산화나트륨용액의 농도와 칠지 시간을 각각 5%, 10%, 15%와 5분, 10분, 15분, 20분으로 하여 처리하였을 때 인장 강도는 5%의 농도에서는 칠지 시간에 따른 유의한 차이가 없었으나, 10%와 15%의 농도에서는 칠지 시간이 길수록 인장 강도가 점차적으로 약해지면서 인장 강도의 변화에 유의한 차이가 있었다.

3. 수산화나트륨용액의 농도와 칠지 시간에 따른 섬유장을 비교하였을 때 면섬유와 유사한 3cm 이내의 길이를 나타낸 조건은 수산화나트륨용액 5%에서 20분 칠지, 10% 농도에서 10분, 15분, 20분 칠지, 15% 농도에서 10분, 15분, 20분 칠지하는 것으로 나타났다. 캐나프 섬유에서 뿌리와 해미철로스가 제거되는 만큼 결정 화도가 낮아졌으며 단섬유의 개수가 증가하고 섬유장은 줄어졌다.

이와 같은 결과로 캐나프 섬유는 뿌리와 거친 특성을 섬유의 길이와 세밀화 정도에 따라 면과 간이 유연하고 부드러운 형태로 가공될 수 있으므로 앞으로 캐나프 이용의 범위를 확대할 수 있을 것으로 생각된다.

### 참고문헌

방영혁, (1999). 光触覚(光)계(SLUM)과 식수분포지지(FDI)에 의한 캐나프 인과와 농부 농업 경로의 초기 접촉 분
성, 충북대학교 농학 석사학위 논문.