Analysis of Environmental Design Data for Growing Pleurotus ervngii

큰 느타리버섯 재배사의 환경설계용 자료 분석

  • Yoon, Yong-Cheol (Division of Agri Systems Eng., College of Agri. & Life Sciences, Gyeongsang National University) ;
  • Suh, Won-Myung (Division of Agri Systems Eng., College of Agri. & Life Sciences, Gyeongsang National University) ;
  • Lee, In-Bok (Dept. of Landscape & Rural Systems Eng., Seoul National University)
  • 윤용철 (경상대학교 농업생명과학대학 농업시스템공학부(농업생명과학연구원)) ;
  • 서원명 (경상대학교 농업생명과학대학 농업시스템공학부(농업생명과학연구원)) ;
  • 이인복 (서울대학교 농업생명과학대학 조경)
  • Published : 2005.06.01

Abstract

This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

본 연구에서는 큰 느타리버섯 재배사의 에너지 이용효율과 소요에너지 산정에 대한 기초 자료를 얻기 위하여 기존에 제시한 재배사모형(영구형 단동 및 연동과 반영구형 단동)들을 대상으로 열수지 시뮬레이션을 실시하였다. 또한 재배사의 단열재 및 피복재의 열전달 저항치를 산정한 후, 재배사의 냉$\cdot$난방 부하량을 추정하였다. 진주지방의 경우, 큰 느타리버섯 재배사의 냉$\cdot$난방 D-H 증감현상은 실내 설정온도의 변화에 따라 거의 직선적인 변화를 보였으며, 변화의 정도는 냉방 D-U가 난방 D-H에 비해 훨씬 예민하다는 것을 알 수 있었다. 따라서 설정온도는 물론 실내 유지온도의 제어 양상에 따라 소요 에너지의 변화를 예측할 수 있을 뿐만 아니라, 앞으로 개발될 버섯 재배사의 환경모형 시뮬레이션 검정과 에너지 소요량 추정에도 산정 된 D-H가 유익하게 활용될 수 있을 것으로 판단되었다. 그리고 동일한 재배공간 확보를 전제로 할 경우, 다중 피복의 반영구형 재배사에 비해 다양한 두께 및 재질로 생산되고 있는 영구형 재배사가 단열성능 면에서 현저히 유리하였다 단동 대비 연동구조의 에너지 효율, 단열 정도에 따른 에너지 소요량의 변화를 쉽게 가늠할 수 있을 뿐만 아니라 주어진 지역과 주요 표면의 단열 정도와 표면상태 등에 따라 계절별 또는 재배 주기별 소요 에너지를 예측함으로서 재배사의 구조 및 환경적 최적화를 꾀할 수 있을 것으로 판단되었다.

Keywords

References

  1. Gal, S. W. 2003. Cultivation technology and functionality of Pleurotus eryngii (seminar). Mushroom Institute of Jinju National University and Mushroom Association of Gyeongnam. 63-80 (in Korean)
  2. Kang, M. S., T. S. Kang, A. S. Kang, H. R. Shon, and J. M. Sung. 2000. Studies on mycelial growth and artificial cultivation of Pleurotus eryngii, Korean Journal of Mycology. 28(2):73-80 (in Korean)
  3. Kang, T. S., M. S. Kang, J. M. Sung, A. S. Kang, H. R. Shon, and S. Y. Lee. 2001. Effect of Pleurotus eryngii on the blood glucose and cholesterol in diabetic Rats. Korean Journal of Mycology. 29(2):86-90 (in Korean)
  4. Kim, H. K., J. C. Cheong, H. Y. Chang, G P. Kim, D. Y. Cha, and B. J. Moon. 1997. The artificial cultivation of Pleurotus eryngii (I) - Investigation of mycelial growth conditions-. Korean Journal of Mycology. 25(4):305-310 (in Korean)
  5. Suh, W. M., Y. C. Yoon, and Y. W. Kim. 2002. Status of Oyster mushroom houses in Jinju province. J. Bio-Env. Con. 11(1):7-12 (in Korean)
  6. Suh, W. M., Y. C. Yoon, and Y. W. Kim. 2002. Technical development of environment control complex of micro-climatic factors for Oyster mushroom cultivated in protected environment. Proceedings of the 2002 Annual Con. the Korean Society of Agricultural Engineering. 121-124 (in Korean)
  7. Suh, W. M., Y. C. Yoon, S. W. Park, and J. K. Kwo. 2003. Instrumentation and control of environment factors in eryngii growing house. Proceedings of Korean Society for Bio-Environment. Con. 2003 Spring Conference. 12(1):161-165 (in Korean)
  8. Suh, W. M. and Y. C. Yoon. 2004. An analysis on thermal insulation effect of farm structures coated with surface treatment. J. of KSAE. 46(4):39-46 (in Korean) https://doi.org/10.5389/KSAE.2004.46.4.039
  9. Yoon, Y. C., W. M. Suh, and H. W. Lee. 2003. Analysis of environment factors in Pleurotus eryngii cultivation house. J. Bio-Env. Con. 12(4):200-206 (in Korean)
  10. Suh, W. M. and Y. C. Yoon. 2005. Analysis of structural design data for growing Pleurotus eryngii, J. of KSAE. the paper under contribution (in Korean)
  11. Yoon, Y. C., W. M. Suh, and C. Yu. 2004. Analysis of actual state of facilities for Pleurotus eryngii cultivation. J. Bio-Env. Con. 13(4):217-225 (in Korean)
  12. Lee, H. W. 2003. Cultivation technology and functionality of Pleurotus eryngii (seminar). Mushroom Institute of Jinju National University and Mushroom Association of Gyeongnam. 43-63 (in Korean)