DOI QR코드

DOI QR Code

Comparison of Physiological Activities between Hot-Water and Ethanol Extracts of Bokbunja (Rubus coreanum F.)

복분자(Rubus coreanum F.) 열수 및 에탄올추출물의 생리활성비교

  • Cho, Young-Je (Dept. of Food Engineering, Sangju National University) ;
  • Chun, Sung-Sook (Dept. of Food Science & Technology, Yeungnam University) ;
  • Kwon, Hyo-Jung (Dept. of Food Engineering, Sangju National University) ;
  • Kim, Jeung-Hoan (Dept. of Food Engineering, Sangju National University) ;
  • Yoon, So-Jung (Dept. of Food Engineering, Sangju National University) ;
  • Lee, Kyoung-Hwan (Dept. of Food Engineering, Sangju National University)
  • 조영제 (상주대학교 식품공학과) ;
  • 천성숙 (영남대학교 식품가공학과) ;
  • 권효정 (상주대학교 식품공학과) ;
  • 김정환 (상주대학교 식품공학과) ;
  • 윤소정 (상주대학교 식품공학과) ;
  • 이경환 (상주대학교 식품공학과)
  • Published : 2005.07.01

Abstract

Physiological activities of hot-water extract and various concentration ethanol extracts from Bokbunja (Rubus coreanum F. ) were examined. Total phenol content of extract showed higher content in hot-water extract (41.4 mg/g) than other extracts, Optimum condition of extraction for phenolic was $60\%$ ethanol extract (41.3 mg/g). The ABTS radical decolorilization and antioxidant protection factor were determined. Results shown inhibition rate on ABTS of $60\%$ ethanol extract $(99.8\%)$ and antioxidant protection factor of water extract (1.2 PF). Electron donation ability on DPPH was higher 60$\%$ ethanol extract than another percent ethanol extracts. Also hydroxyl radical scavenging activity of extracts was higher $60\%$ ethanol extracts $(0.03\times100\mu\;M)$ than another extracts because the value of TBARS was lower than another extracts. But hot-water extract had higher inhibitory activities on xanthine oxidase and pancreatin $\alpha$ -amylase than $60\%$ ethanol extract. ACE (angiotensin converting enzyme) inhibitory activities were equaled to hot water exract and $60\%$ ethanol extract. Protocatecuic acid was the most abundant phenolic compounds as analyzed by HPLC. The results will be useful as natural antioxidants and functional foods for understanding the physiological activities of Bukbunja extracts.

복분자의 열수추출물과 에탄올 농도별 추출물의 항산화 및 생리 활성효과를 비교하였다. 각 추출물의 총 페놀 함량은 열수추출물에서 41.4 mg/g으로 가장 높았으며, 에탄올 추출물은 $60\%$에서 41.3 mg/g으로 높았다. 복분자 추출물의 항산화 효과는 ABTS가 $60\%$ 에탄을 추출물에서 99.8$\%$, 열수추출물에서 $99.3\%$로 나타났으며, PF는 1.3, 1.2, DPPH가 $93.3\%$, $91.1\%$, TBARS가$ 0.03(\times\;100\mu M),\;0.04(\times\;100\mu M)$로 나타났다 복분자 추출물의 생리활성효과는 XOase 활성억제 효과와 pancreatin $\alpha$-amylase 활성억제효과가 열수추출물이 $60\%$ 에탄을 추출물보다 높았으며, ACE 활성억제효과는 열수추출물과과 $60\%$ 에탄올 추출물이 같은 활성억제효과를 나타내었다. 복분자 추출물로부터 생리활성효과에 영향을 미치는 페놀물질을 알아보기 위해 4가지 페놀화합물인 protocatecuic acid, caffeic acid, courmaric acid, rosemarinic acid를 선정하여 HPLC로 분석해 본 결과 $60\%$ 에탄을 추출물과 열수추출물 모두 protocatecuic acid가 12.5 mg/g, 10 mg/g으로 4가지 페놀화합물 가운데 가장 많이 검출되었다. 이상의 결과로 복분자 추출물의 생리활성효과는 천연항산화제 및 기능성 식품으로 이용 가능할 것으로 판단되었다

Keywords

References

  1. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338
  2. Shim KH, Young HS, Lee TW, Choi JS. 1995. Studies on the chemical components and antioxidative effects of Solanum lyratum Thunb. Korean J Pharmacogn 26: 130-138
  3. Han YB, Kim MR, Han BH, Han YN. 1987. Studies on anti-oxidant component of mustard leaf and seed. Korean J Pharmacogn 18: 41-49
  4. Kim JS, Kang SS, Choi JS, Lee MH, Lee TS. 1998. Antioxidant components from Aralia continentalis. Korean J Pharmacogn 29: 13-17
  5. Shin TS, Moon JD, Kim YG, Kim YJ, 1998. Effect of natural antioxidants on lipid oxidation of ground pork. Korean J Food Sci Technol 30: 794-802
  6. Yamaguchi T, Takamura H, Matoba T, Terao J, 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by 1, 1-diphenyl-2- picrylhydrazvl. Biosci Biotech Biochem 62: 1201-1204 https://doi.org/10.1271/bbb.62.1201
  7. Kuo JM, Yeh DB, Pan BS. 1999. Rapid photometric assay evaluating antioxidative activity in edible plants material. J Agric Food Chem 47: 3206-3209 https://doi.org/10.1021/jf981351o
  8. Manach C, Morand C, Crespy V, Demigne C, Texier O, Regerat F, Remesy C. 1998. Quercetin is recovered in human plasma as conjugated derivative which retain antioxidant properties. FEBS Lett 426: 331-336 https://doi.org/10.1016/S0014-5793(98)00367-6
  9. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic Biol Med 20: 933-956 https://doi.org/10.1016/0891-5849(95)02227-9
  10. Bae GH. 2000. The medical plants of Korea. Kyohak Publishing Co. Ltd, Seoul
  11. Kim SY, Kim JH, Ki SK, Oh MJ, Jung MY. 1994. Antioxidant activities of selected oriental herb extracts. J Am Oil Chem Soc 71: 633-640 https://doi.org/10.1007/BF02540592
  12. Lee JW, Do JH. 2000. Determination of total phenolics compounds from the fruit of Rubus coreanum and antioxidative activity. J Korean Soc Food Sci Nutr 29: 943- 947
  13. Hong WP, Kim MJ, Hong WN. 2002. Hereditary variety activity of nature group from Rubus coreanum F. Korean Soc Forest 91: 67-72
  14. Ju KJ, Park JM. 1982. Study of safety from anthocyanin. J Korean Soc Food Sci Nutr 11: 67-74
  15. Dural B, Shetty K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed Anise (Pimpinella anisum L.) root extract. J Food Biochem 25: 361-377 https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  16. Blois MS. 1958. Antioxidant determination by the use of stable free radical. J Korean Soc Food Sci Nutr 26: 1198-1199
  17. Andarwulan N, Shetty K. 1999. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of Anise (Pimpinella anisum L.). J Agric Food Chem 47: 1776-1780 https://doi.org/10.1021/jf981214r
  18. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Methods Enzymol 52: 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  19. Fellegrini N, Roberta K, Min Y, Catherine RE. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2' -azinobis (3-ehylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Engymol 299: 379-389 https://doi.org/10.1016/S0076-6879(99)99037-7
  20. Stirpe F, Della Corte E. 1969. The regluation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3863
  21. Cushman DW, Ondetti MA. 1980. Inhibitors of angiotensin converting enzyme for treatment of hypertension. Biochem Pharmacol 29: 1871-1877 https://doi.org/10.1016/0006-2952(80)90096-9
  22. Cavidson PH, Parish ME. 1989. Methods of testing the efficacy of food antimicrobials. Food Technol 43: 148-150
  23. Chun SS, Cho YJ, Cho KY, Choi C. 1995. Change of functional properties and extraction of sesame meal protein with phytase and protease. Korean J Food Sci Technol 30: 895-901
  24. Song YH, Kim DS, Jung SR, Seo YS, Chang KW. 2001. Inhibitory effect of caffeic acid phenethyl ester on the growth and glucosyltransferase activity of streptococcus mutans. J Korean Acad Dent Health 25: 299-306
  25. Nuytinck JKS, Goris RJA, Kalter ES, Schillings PHM. 1985. Inhibition of experimentally induced microvascular injury by rosemarinic acid. Agents Actions 17: 373-374 https://doi.org/10.1007/BF01982651
  26. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41 https://doi.org/10.1021/jf950190a
  27. Bors W, Saran M. 1987. Radical scavenging by flavonoid antioxidants. Free Rad Res Comm 2: 289-294 https://doi.org/10.3109/10715768709065294
  28. Fitzpatrick DF, Hirschfield SL, Coffey RG. 1993. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 265: 774-778
  29. An BJ, Lee JT. 1999. Isolation and characterization of angiotensin converting enzyme inhibitors from Camellia sinensis L. and their chemical structure determination. Food Sci Biotechnol 8: 285-289
  30. Kim KM, Suh HJ, Chung SH, Cho WD, Ma SJ. 1999. Chemical structure of angiotensin converting enzyme inhibitor isolated from onion flesh. Food Sci Biotechnol 8: 329-332
  31. Iwuoha CI, Aina JO. 1997. Effects of steeping condition and germination time on the alpha-amylase activity, phenolics content and malting loss of Nigerian local red and hybrid short kaura sorghum malt. Food Chem 58: 289-295 https://doi.org/10.1016/0308-8146(95)00215-4
  32. Lee WY, Ahn JK, Park YK, Park SY, Kim YM, Rhee HI. 2004. Inhibitory effects of proanthocyanidin extracted from Distylium racemosum on $\alpha$-amylase and $\alpha$-glucosidase activities. Kor J Pharmacogn 35: 271-275

Cited by

  1. Anti-inflammatory Effect of Jatrorrhizine from Phellodendron amurense in Lipopolysaccharide-stimulated Raw264.7 Cells vol.54, pp.2, 2011, https://doi.org/10.3839/jabc.2011.020
  2. Antioxidant Activities of Ethanol Extracts from Different Parts of the Black Raspberry (Rubus occidentalis) Obtained Using Ultra-sonication vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.504
  3. Physiological Functionalities ofVitis hybrid(Sheridan)-Rubus coreanusRed Wine Made bySaccharomyces cerevisiae vol.39, pp.2, 2011, https://doi.org/10.4489/MYCO.2011.39.2.109
  4. Evaluation of Antioxidant Activity in Pork Patties Containing Bokbunja (Rubus coreanus) Extract vol.27, pp.4, 2007, https://doi.org/10.5851/kosfa.2007.27.4.432
  5. Antiobesity Effects of UnripeRubus coreanusMiquel and Its Constituents: AnIn VitroandIn VivoCharacterization of the Underlying Mechanism vol.2016, 2016, https://doi.org/10.1155/2016/4357656
  6. Antioxidant activity and hepatic lipids improvement effects of Rubus coreanus in high-fat diet-fed rats vol.38, pp.2, 2015, https://doi.org/10.7853/kjvs.2015.38.2.117
  7. Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine vol.123, pp.2, 2010, https://doi.org/10.1016/j.foodchem.2010.04.040
  8. Antioxidant Activities of Native Gwangyang Rubus coreanus Miq. vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.327
  9. Protective Effects of Radiation-induced Blackberry Mutant Extract on Carbon Tetrachloride (CCl4)-induced Liver Injury in Sprague-Dawley Rats vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.807
  10. Inhibitory Effects of Polyphenol-Rich Fraction Extracted from Rubus coreanum M on Thoracic Aortic Contractility of Spontaneously Hypertensive Rats vol.19, pp.4, 2011, https://doi.org/10.4062/biomolther.2011.19.4.477
  11. Isolation and Identification of Inhibitory Compounds on Helicobacter pylori from Rosa multiflora Thunberg Fruit Extracts vol.20, pp.10, 2010, https://doi.org/10.5352/JLS.2010.20.10.1511
  12. Physicochemical and Sensory Characteristics of Sponge Cakes with Rubus coreanus Powder vol.20, pp.3, 2015, https://doi.org/10.3746/pnf.2015.20.3.204
  13. Antioxidant Activities of Rubus coreanus Miquel and Morus alba L. Fruits vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.381
  14. Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells vol.46, pp.3, 2014, https://doi.org/10.9721/KJFST.2014.46.3.384
  15. Volatile aroma and sensory analysis of black raspberry wines fermented by different yeast strains vol.121, pp.1, 2015, https://doi.org/10.1002/jib.199
  16. Effects of aRubus coreanusMiquel supplement on plasma antioxidant capacity in healthy Korean men vol.5, pp.5, 2011, https://doi.org/10.4162/nrp.2011.5.5.429
  17. Functional Composition and Antioxidant Activity of Eel Teriyaki Sauce with Bokbunja (Rubus coreanus Miquel) vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.287
  18. Effect of Composts Fermented with Korean Medicinal Herb Wastes on Physiological Activity of Rubus coreanus Miquel (Bokbunja) vol.24, pp.2, 2011, https://doi.org/10.7732/kjpr.2011.24.2.243
  19. Optimization for Chia Seed Antioxidative Activity of Solvent Extraction Using the Response Surface Methodology vol.29, pp.2, 2016, https://doi.org/10.9799/ksfan.2016.29.2.228
  20. Anti-Inflammatory and Anti-Superbacterial Activity of Polyphenols Isolated from Black Raspberry vol.17, pp.1, 2013, https://doi.org/10.4196/kjpp.2013.17.1.73
  21. Biological Activity of Extracts from Garden Sage (Salvia officinalis L.) vol.51, pp.6, 2008, https://doi.org/10.3839/jabc.2008.046
  22. Biological Activity of Ethanol Extracts from Amelanchier asiatica Fruits vol.54, pp.4, 2011, https://doi.org/10.3839/jabc.2011.039
  23. Blood Flow Improvement Effect of Bokbunja (Rubus coreanus) Seed Oil in High-Fat Diet-Fed Mouse Model vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1105
  24. 체리 세이지(Salvia officinalis L.) 추출물의 생리활성 탐색 vol.19, pp.3, 2009, https://doi.org/10.5352/jls.2009.19.3.390
  25. 복분자 열매(Rubus coreanus Miquel)의 항산화 활성 및 생리활성물질 vol.33, pp.3, 2005, https://doi.org/10.12925/jkocs.2016.33.3.474
  26. Lipopolysaccharide로 유도된 Raw 264.7 cell에서 잣 잎(Koreinsis chinensis L.) 추출물의 Pro-inflammatory 억제 효과 vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.031
  27. Antioxidant activity and phenolic acid content of Gynostemma pentaphyllum leaves according to extraction conditions vol.46, pp.1, 2005, https://doi.org/10.7744/kjoas.20180089
  28. Evaluation of the Biological Activities of Berries as an Inner Beauty Ingredient vol.18, pp.3, 2020, https://doi.org/10.20402/ajbc.2020.0051
  29. 미숙과 복분자 추출물의 상체비만 개선 효과: 무작위배정, 이중눈가림, 위약-대조 임상연구 vol.31, pp.4, 2005, https://doi.org/10.18325/jkmr.2021.31.4.117