DOI QR코드

DOI QR Code

Effect of Wetting Angle and Powder Content on the Optical Properties of Self-Assembled SiO2 Photonic Crystals

기판의 접촉각과 분말량이 자기조립을 통해 형성된 SiO2 광자결정의 광특성에 미치는 영향

  • O, Yong-Taeg (Department of Advanced Materials Engineering, Chosun University) ;
  • Kim, Myung-Soon (Department of Chemistry, Chosun University) ;
  • Shin, Dong-Chan (Department of Advanced Materials Engineering, Chosun University)
  • Published : 2005.07.01

Abstract

This study investigated the effects of the substrate and powder content on the fabrication of SiO$_{2}$ photonic crystals by evaporation method. Photonic crystals were self-assembled on quartz, Corning 1737 glass, slide glass, and ITa glass to verify the effects of the wetting angle and surface morphology. The powder contents of the solution were varied from 0.2 to 2.0 wt$\%$. The number of photonic crystal layers increased according to the decrease of wetting angle and surface roughness. The resultant photonic crystals showed the best optical characteristics when the number of photonic crystal layers was within 40 and 50. In addition, the intensity peak of Fabry¡?Perot fringes increased when the wetting angle was large and the particle size was small. Photonic crystals coated on ITO glass showed the highest reflectance peak of 63$\%$ relative intensity.

Keywords

References

  1. E. Yablonovitch, ' Inhibited Spontaneous Emission in Solid State Physics and Electronics,' Phys. Rev. Lett., 58 2059-62 (1987) https://doi.org/10.1103/PhysRevLett.58.2059
  2. C. Lopez, ' Materials Aspects of Photonic Crystals,' Adv. Mater., 15 1679-704 (2003) https://doi.org/10.1002/adma.200300386
  3. E. Yablonovitch, T. J. Gmitter, and R. M. Leung, ' Photonic Band Structures: The Face-Centered-Cubic Case Employing Nonspherical Atoms,' Phys. Rev. Lett., 67 2295-98 (1991) https://doi.org/10.1103/PhysRevLett.67.2295
  4. T. F. Krauss and R. M. DelaRue, ' Photonic Crystals in the Optical Regime-Past, Present and Future,' Prog. Quantum Electronics, 23 51-96 (1999) https://doi.org/10.1016/S0079-6727(99)00004-X
  5. S. H. Im, Y. T. Lim, D. J. Suh, and O. O. Park, ' Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Band Gap Crystals,' Adv. Mater., 14 1367-69 (2002) https://doi.org/10.1002/1521-4095(20021002)14:19<1367::AID-ADMA1367>3.0.CO;2-U
  6. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, ' Single-Crystal Colloidal Multilayers of Controlled Thickness,' Chem. Mater., 11 2132-40 (1999) https://doi.org/10.1021/cm990080+
  7. E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Meseguer, and C. Lopez, ' Optical Study of the Full Photonic Band Gap in Silicon Inverse Opals,' Appl. Phys. Lett., 81 4925-27 (2002) https://doi.org/10.1063/1.1530752
  8. Y. Xia, B. Gates, Y. Yin, and Y. Lu, ' Monodispersed Colloidal Spheres: Old Materials with New Applications,' Adv. Mater., 12 693-713 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  9. M. Holgado, G. Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, ' Electrophoretic Deposition to Control Artificial Opal Growth,' Langmuir, 15 4701-04 (1999) https://doi.org/10.1021/la990161k
  10. R. M. Amos, J. G. Rarity, P. R. Tapster, T. J. Shepherd, and S. C. Kitson, ' Fabrication of Large-Area Face-Centered-cubic Hard-Sphere Colloidal Crystals by Shear Alignment,' Phys. Rev. E, 61 2929-35 (2000) https://doi.org/10.1103/PhysRevE.61.2929
  11. J. H. Moon, S. Kim, G. R. Yi, Y. H. Lee, and S. M. Yang, ' Fabrication of Ordered Macroporous Cylinders by Colloidal Templating in Microcapillaries,' Langmuir, 20 2033-35 (2004) https://doi.org/10.1021/la0358015
  12. Y. T. O, M. S. Kim, and D. C. Shin, ' Effect of Heat-Treatment on the Optical Properties of Self-Assembled $SiO_{2}$ Photonic Crystals(in Korean),' J. Kor. Ceram. Soc., 42 127-31 (2005) https://doi.org/10.4191/KCERS.2005.42.2.127
  13. Y. H. Ye, F. LeBlanc, A. Hache, and V. V. Truong, ' Self-Assembling Three-Dimensional Colloidal Photonic Crystal Structure with High Crystalline Quality,' Appl. Phys. Lett., 78 52-4 (2001) https://doi.org/10.1063/1.1337619
  14. W. Stober, A. Fink , and E. Bohn, ' Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,' J. Colloid and Interface Sci., 26 62-9 (1968) https://doi.org/10.1016/0021-9797(68)90272-5
  15. K. S. Kim and W. S. Kim, ' Study on Nucleation and Growth Rates of $SiO_{2}$ Particles in the Supersaturation Solution Produced by TEOS,' HWAK KONGHAK, 37 56-63 (1999)
  16. H. Ko, H. W. Lee, J. S. Kim, and J. H. Moon, ' Process Development of Self-Assembled Monolayers (SAMs) of Colloidal Particles(in Korean),' J. Kor. Ceram. Soc., 39 981-87 (2002) https://doi.org/10.4191/KCERS.2002.39.10.981
  17. M. S. Kim, S. J. Hong, Y. T. O, B. G. Lee, and D. C. Shin, ' Optical Properties of a $SiO_{2}$ Photonic Crystal Layer Fabricated by Seeded Growth of Spherical Nanoparticle,' The 21th Korea-Japan International Seminar on Ceramics, 387 (2004)
  18. Y. H. Ye, S. Badilescu, and V. V. Truong, ' Large-Scale Ordered Macroporous $SiO_{2}$ Thin Films by a Template-Directed Method,' Appl. Phys. Lett., 81 613-18 (2002) https://doi.org/10.1063/1.1495525
  19. K. P. Velikov, T. Van Dillen, A. Ploman, and A. Van Blaaderen, ' Photonic Crystals of Shape-Anisotropic Colloidal Particles,' Appl. Phys. Lett., 81 838-40 (2002) https://doi.org/10.1063/1.1497197
  20. H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, and R. Mayoral, ' Photonic Crystal Properties of Packed Submicrometric $SiO_{2}$ Spheres,' Appl. Phys. Lett., 71 1148-50 (1997) https://doi.org/10.1063/1.119849