DOI QR코드

DOI QR Code

SHS합성법에 의한 리튬이온이차전지용 정극활물질 LiMn2O4 의 제조

Synthesis of LiMn2O4 Powders Using Li-Ion Secondary Battery by SHS Process

  • 장창현 (충남대학교 금속공학과) ;
  • ;
  • 김정한 (한국과학기술원 신소재공학과) ;
  • 원창환 (충남대학교 금속공학과)
  • Jang, Chang-Hyun (Department of Metallurgical Engineering, Chungnam National University) ;
  • Nersisyan, Hayk (Department of Metallurgical Engineering, Chungnam National University) ;
  • Kim, Jung-Han (Department of Materials Science and Engineering, KAIST) ;
  • Won, Chang-Whan (Department of Metallurgical Engineering, Chungnam National University)
  • 발행 : 2005.07.01

초록

A simple and effective method for the synthesis of LiMn$_{2}$O$_{4}$ powder as a cathode material for lithium secondary battery is reported. Micrometer size LiMn$_{2}$O$_{4}$ was prepared by combustion synthesis technique employing initial mixture of l.l LiNO$_{3}$ -1.3Mn-0.7MnO$_{2}$-1NaCl composition. Parametric study of the combustion process including molar ratio of Mn/MnO$_{2}$ and NaCl concentration were carried out under air atmosphere. The combustion products obtained were additionally heat treated at the temperature 900$^{\circ}C$ and the washed by distilled water. The results of charging-discharging characteristics revealed that LiMn$_{2}$O$_{4}$ cell synthesized in the presence of NaCl had a high capacity and much better reversibility than one formed without NaCl An approximate chemical mechanism for LiMn$_{2}$O$_{4}$ formation is proposed.

키워드

참고문헌

  1. B. C. H. Steele, ' Fast Ion Transport in Solids,' Elsevier North Holland, Inc., 103 (1973)
  2. M. B. Armond, ' Fast Ion Transport in Solids,' Elsevier North Holland, Inc., 685 (1973)
  3. Ullmann's Encyclopedia of Industrial Chemistry (1989)
  4. Handbook of Toxic and Hazards Chemicals and Carcin-ogens (1985)
  5. J. Guan and M. Liu, Solid State Ionics, 21 110 (1998)
  6. G. Li, A. Yamada, Y. Fukushima, K. Yamaura, T. Saito, T. Endo, H. Azuma, K. Sekai, and Y. Nishi, Solid State Ionics, 130 221 (2000) https://doi.org/10.1016/S0167-2738(00)00665-2
  7. L. Hernan, J. Morales, L. Sanchez, and J. Santos, Solid State Ionics, 104 205 (1997) https://doi.org/10.1016/S0167-2738(97)00425-6
  8. S. Kang and J. Goodenough, J. Electrochem. Soc., 147 3621 (2000) https://doi.org/10.1149/1.1393949
  9. S. R. Prabaharan, M. S. Michael, T. P. Kumar, A. Mani, K. Athinarayanaswami, and R. Gangadharan, J. Mater. Chem., 5 1035 (1995) https://doi.org/10.1039/jm9950500995
  10. W. Liu, G. C. Farrington, F. Chaput, and B. Dunn, J. Electrochem. Soc., 143 879 (1996) https://doi.org/10.1149/1.1836552
  11. W. Liu, K. Kowal, and G. C. Farrington, J. Electrochem. Soc., 143 3590 (1996) https://doi.org/10.1149/1.1837257
  12. E. Zhecheva, M. Gorova, and R. Stoyanova, J. Mater. Chem., 9 1559 (1996) https://doi.org/10.1039/a900076c
  13. K. Hwang, W. Um, H. Lee, J. Song, and K. Chung, J. Power Sour., 74 169 (1998) https://doi.org/10.1016/S0378-7753(98)00050-0
  14. Z. A. Munir and U. Anselmi-Tamburini, Mater. Sci. Reports. 69 277-83 (1989)
  15. R. Pampuch, J. Lis, and L. Stobierski, Sci, Ceram., 14 15-26 (1988)
  16. Y. Miyamoto and J. Mineralogical, Soc. of Jpn., 18 383-45 (1988)
  17. A. G. Merzhanov, ' Reviews: Fundamentals, Acheivements, and Perspectives for Development of Solid-Flame Combustion,' Russ. Chem. Bull., 46 [1] 1-2 (1997) https://doi.org/10.1007/BF02495340
  18. H. H. Nersisyan, J. H. Lee, and C. W. Won, J. Mater. Res., 17 2859-64 (2002) https://doi.org/10.1557/JMR.2002.0415
  19. H. H. Nersisyan, J. H. Lee, and C. W. Won, Mat. Res. Bull., 38 [7] 1135-46 (2003) https://doi.org/10.1016/S0025-5408(03)00114-4
  20. S. P. Kim, ' Lithium Ion Secondary Battery,' Dasom Press, 39-41, 273-74 (2002)
  21. Y. Xia Y. Hideshima, N. Kumada, M. Nagano, and M. Yoshio, ' Synthesis and Characterization of $LiMn_{2}O_{4}$ for Use in Li-Ion Batteries,' J. Power Source, 72 22-6 (1998) https://doi.org/10.1016/S0378-7753(97)02809-7
  22. J. Kim and A. Manthiram, ' A Manganese Oxyiodide Cathode for Rechargeable Lithium Battery,' Nature, 390 265-67 (1997) https://doi.org/10.1038/36812