An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties

체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성

  • Published : 2005.07.01

Abstract

An electromagnetic type shock wave generator suitable for extracorporeal shock wave therapy has been constructed by employing a solenoid coil. The Property of the shock waves produced by the shock wave generator was evaluated using a needle hydrophone. It was shown that, as the capacitor discharging voltage increased from 8 to 18 kV, the Positive Peak Pressure (P+) of the shock wave increased non-linearly from 10 to 77 Wa. In contrast. the negative peak Pressure (f) varied between -3.2 and -6.8 MPa. had its absolute maximum of -6.9 ma at 14 kV The peak amplitudes P+ measured repeatedly under the same voltage setting varied within $5\;\%$ from mean values and this is very small compared to about $50\;\%$ for electrohydraulic type shock wave generators. It could be observed, from the hydrophone signal recorded over 1 ms. several sequential acoustic impulses representing bubble collapses. namely. acoustic cavitation. induced by the shock wave. A technique based on wavelet transformation was used to accurately measure the time delay between the 1st and 2nd collapse known to be closely related to the shock strength. It was observed that the measured time delay increased almost linearly from 120 to $700\;{\mu}s$ with the shock wave Pressure P+ increasing from 10 to 77 MPa.

솔레노이드 코일을 이용하여 체외 충격파 치료술에 적합한 전자기식 충격파 발생기를 구성하였다. 충격파 발생기의 충격파의 특성은 바늘형 하이드로폰을 이용하여 평가하였다 충격파 발생기 방전 전압이 8에서 18 kV로 증가할 때 측정된 충격파의 최대 양압 (P+)은 $10\~77\;MPa$사이를 비선형적으로 증가하는 것으로 나타났다. 반면, 충격파 최대 음압 (P-)은 $-3.2\~-6.8\;MPa$ 에서 변화하고 있으며, 방전 전압이 14 kV에서 -6.9 MPa로 가장 낮은 값을 보였다. 동일한 설정에서 반복 측정된 충격파의 크기 P+는 평균값의 $5\;\%$ 이내에서 변화하며, 전기 수력학적 방식 충격파 발생기 경우의 $50\;\%$ 정도와 비교하여, 매우 작은 것으로 나타났다. 시간 축에서 1 ms 동안 측정한 하이드로폰 신호로부터 충격파에 의해 야기된 음향 공동 현상, 즉, 기포의 파열 현상으로 발생된 다수의 순차적인 음향 임펄스를 관찰할 수 있었다. 웨이블렛 변환 기법을 이용하여, 충격파 강도와 밀접한 관련이 있는 것으로 알려진, 첫 번째와 두 번째 기포 파열 시간 지연을 정확히 측정하였다. 충격파 크기 P+가 10 에서 77 MPa로 증가할 때 측정된 기포 파열 지연 시간은 120부터 $700\;{\mu}s$ 로 거의 선형적으로 증가함을 관찰할 수 있었다.

Keywords

References

  1. C.G. Chaussy, W. Brendel and E. Schmiedt, 'Extracorporeally induced destruction of kidney stones by shock waves', Lancet, 3, 1265-1268, 1980
  2. H. Schulze, L. Hertle, J. Graff, P.J. Funke, and T. Senge, 'Combined treatment of branched calculi by percutaneous nephrolithotomy and extracorporeal shock wave lithotripsy', J. Urology, 135, 1138-1141, 1986 https://doi.org/10.1016/S0022-5347(17)46017-4
  3. A.J. Coleman, M.J. Choi and J.E. Saunders, 'Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy', Ultrasound in Medicine & Biology, 22 (8), 1079-1087, 1996 https://doi.org/10.1016/S0301-5629(96)00118-4
  4. R.O. Cleveland, O.A. Sapozhnikov, M.R. Bailey and L.A. Crum, 'A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro', J. Acoustic. Soc. Am., 107 (3), 1745-1758, 2000 https://doi.org/10.1121/1.428572
  5. P. Russo, R. Stephenson, C. Mies, R. Huryk, W. Heston, M. Melamed and W. Fair, 'High energy shock waves suppress tumor growth in vitro and in vivo', J. Urology, 135, 626, 1986
  6. G.O. Oosterhof, G.A. Smitd, J.E. de Ruyter, J.A. Schalken and F.M.J. Debruyne, 'in vivo effects of high energy shock waves on urological tumors: an evaluation of treatment modalities', J. Urology, 144, 785-789, 1990 https://doi.org/10.1016/S0022-5347(17)39592-7
  7. R.P. Holmes, L.I. Yeaman, W.J. Li, L.J. Hart, C.A. Wallen, R.D. Woodruff, and D.L. McCullough, 'The combined effects of shock waves and Cisplatin therapy on rat prostate tumors', J. Urology, 144, 159-163, 1990 https://doi.org/10.1016/S0022-5347(17)39401-6
  8. M. Loew, W. Daecke, D. Kusnierczak, M. Rahmanzadeh and V. Ewerbeck, 'Shock-wave therapy is effective for chronic salicfying tendenitis of the shoulder', J. Bone Joint Surg., 81B, 863-967, 1999
  9. C.E. Bachmann, G. Gruber, W. Konermann, A. Arnold, G.M. Gruber and F. Ueberle, ESWT and ultrasound imaging of the musculoskeletal system. (Steinkopff Verlag Darmstart), 21-25, 2001
  10. http://lonestar.texas.net/~jslick/orthotripsy/index.html
  11. A.J. Coleman, J.E. Saunders and M.J. Choi, 'An experimental shock wave generator for lithotripsy studies', Physics in Medicine & Biology, 34 (11), 1733-1742, 1989 https://doi.org/10.1088/0031-9155/34/11/020
  12. M.J. Choi, 'Precise determination of the cavitation activity caused by a lithotripsy field using a wavelet transformation', Proceedings of the Physics and Technology of Medical Ultrasound, 26-28 March 2001, York, UK
  13. S.H. Lee, J.H. Lee, H.J. Lee and M.J. Choi, 'Electromagnetic and dynamic properties of an electromagnetic type shock wave source: numerical simulation', Proceedings of the Acoustical Society of Korea, 20 (1s), 917-920, 2001
  14. A.J. Coleman, J.E. Saunders, L.A. Crum and M. Dyson, 'Acoustic cavitation generated by an extracorporeal shock wave lithotripter' Ultrasound in Medicine & Biology, 13, 69-76, 1987 https://doi.org/10.1016/0301-5629(87)90076-7
  15. A.J. Coleman, M.J. Choi, J.E. Saunders and T.G. Leighton, 'Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter', Ultrasound in Medicine & Biology, 18 (3), 267-281, 1992 https://doi.org/10.1016/0301-5629(92)90096-S
  16. W. Sass, M. Braunlich, H.P. Dreyer, E. Matura, W. Folberth, H.G. Priesmeyer, and J. Seifer, 'The mechanism of stone disintegration by shock waves', Ultrasound in Medicine and Biology, 17 (3), 239-243, 1991 https://doi.org/10.1016/0301-5629(91)90045-X
  17. M.J. Choi, A.J. Coleman and J.E. Saunders, 'The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter', Physics in Medicine & Biology, 38 (11), 1561-1573, 1993 https://doi.org/10.1088/0031-9155/38/11/002
  18. M.J. Choi, 'Theoretical aspects of high amplitude pulsed ultrasound used in lithotripsy. Technical notes and research briefs', J. Acoustical Society America, 93 (4), Pt.1, 2244, 1993
  19. M.J. Choi, A.J. Coleman and J.E. Saunders, 'The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter', Physics in Medicine & Biology, 38 (11), 1561-1573, 1993 https://doi.org/10.1088/0031-9155/38/11/002
  20. R.M. Rao and A.S. Bopardikar, Wavelet Transform - Introduction to Theory and Applications, (Addison-Wesley: Reading, Massachusetts, 1998.)
  21. A.J. Coleman, M.J. Choi and J.E. Saunders, 'Influence of output setting on acoustic field of a shock wave lithotripter', In: Paumgartner G., Sauerbruch T., Sackmann M. and Burhenn H. J. eds. Lithotripsy and related techniques for gallstone treatment, Chapter I. Chicago: Mosby Year Book Inc, 1991
  22. A.J. Coleman, M.J. Choi and J.E. Saunders, 'Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter', Ultrasound in Medicine & Biology, 17 (3), 245-255, 1991 https://doi.org/10.1016/0301-5629(91)90046-Y
  23. A.J. Coleman and J.E. Saunders, 'A survey of acoustical output of commercial shock wave lithotripters', Ultrasound in Medicine & Biology, 15 (3), 213-221, 1989 https://doi.org/10.1016/0301-5629(89)90066-5
  24. G.R. Harris, 'Lithotripsy pulse measurement errors due to non-ideal hydrophone and amplifier frequency response', Ultrasonic Symposium, 1393-1398, 1990
  25. S.K. Park, M.J. Choi and B.G. Min, 'Correction of deformed ESWL shock wave form using linear extrapolation', 대한의용생체공학회 학술대회논문집, 28, 602-60, 2003
  26. M.J. Choi and A.J. Coleman, 'A non-invasive measurement of acoustic emission from cavitation in human tissue undergoing extracorporeal shock wave lithotripsy', Proceedings of the Acoustical Society of Korea, 14 (1s), 19-23, 1995
  27. C.J. Chuang, P. Zhong and M. Preminger, 'A comparison of stone damage caused by different modes of shock wave generation', The Journal of Urology, 148, 200-205, 1992 https://doi.org/10.1016/S0022-5347(17)36553-9