Preparation and Characterization of $TiO_2$Filled Sulfonated Poly(ether ether ketone) Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Kim Han-Joo (School of Chemical Engineering, Chungbuk National University) ;
  • Kalappa Prashantha (School of Chemical Engineering, Chungbuk National University) ;
  • Son Won-Keun (Research Institute of Advanced Materials, Chungnam National University) ;
  • Park Jong-Eun (Department of Applied Chemistry, Waseda University) ;
  • Oshaka Tetsuya (Department of Applied Chemistry, Waseda University) ;
  • Kim Hyun-Hoo (Digital Electronic Department, Dowon Technical College) ;
  • Hong Ji-Sook (Chemical Engineering Process Center, KRICT) ;
  • Park Soo-Gil (Dept. of Industrial Chemical Engineering, Chungbuk National University)
  • Published : 2005.08.01

Abstract

A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

Keywords

References

  1. M.P. Hogarth and G.A. Hards, 'Direct methanol fuel cells, technological advances and further requirements', Platinum Met. Rev. vol. 40, no. 4, pp. 150-162, 1996
  2. S. Surampudi, S.R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G.K. Surya Prakash and G.A. Olah, 'Advances in direct oxidation methanol fuel cells', J. Power Sources vol. 47, pp. 377-385, 1994 https://doi.org/10.1016/0378-7753(94)87016-0
  3. J. Wang, S. Wasmus and R.F. Savinell, 'Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell, a real-time mass spectrometry study', J. Electrochem. Soc., vol. 142, pp. 4218-4221, 1995 https://doi.org/10.1149/1.2048487
  4. A.S.Arico, S.Srinivasan and V.Antonucci, 'DMFCs: From fundamental aspects to technology development', Fuel Cell, vol. 1, no. 2, pp. 133-135, 2001 https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  5. O. Savadogo, 'Emerging membranes for electrochemical system. I. Solid polymer membranes for fuel cell systems', J. New Mater. Electr. Syst., vol. 1, pp. 47-52, 1998
  6. G. Inzelt, M. Pineri, J.W. Schultze and M.A. Vorotyntsev, 'Electron and proton conducting polymers: recent developments and prospects', Electrochim. Acta., vol. 45 pp. 2403-2410, 2000 https://doi.org/10.1016/S0013-4686(00)00329-7
  7. V. Tricoli, 'Proton and methanol transport in poly (perfluorosulfonate) membranes containing $Cs^{+}$ and $H{+}$ cations', J. Electrochem. Soc., vol. 145, pp. 3798- 3805, 1998 https://doi.org/10.1149/1.1838876
  8. L. Jorissen, V. Gogel, J.Kerres and J. Garche, 'New membranes for direct methanol fuel cells', J. Power Sources, vol. 105, no. 2, pp. 267-276, 2002 https://doi.org/10.1016/S0378-7753(01)00952-1
  9. K.T.adjemian, S.J.Lee, S.Srinivasan, J.Benziger and A.B. Bocarsly, 'Silicon oxide nafion composite membranes for proton exchange membrane fuel cell operation at 80-140$^{\circ}C$', J. Electrochem. Soc., vol. 149, no. 3A, pp. 236-243, 2002 https://doi.org/10.1149/1.1452121
  10. V.S. Silva, B. Ruffmann, H. Silva, Y.A. Gallego, A. Mendas, L.M. Madeira and S.P. Nunes, Proton electrolyte membrane properties and direct methanol fuel cell performance: I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes J. Power Sources, vol. 140, no. 10, pp. 34-38, 2005 https://doi.org/10.1016/j.jpowsour.2004.08.004
  11. Suzhen Ren, Chennan Li, Xinsheng Zhao, Zhimo Wu, Suli Wang, Gongquan Sun, Qin Xin and Xuefeng Yang, 'Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cell', J.Membr. Sci., vol. 247, pp. 59-65, 2005 https://doi.org/10.1016/j.memsci.2004.09.006
  12. Peixiang Xing, Gilles P. Robertson, Michael D. Guiver, Serguei D. Mikhailenko, Keping Wang and Serge Kaliaguine. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes J. Membr. Sci. ,vol. 229, pp. 95-100, 2004 https://doi.org/10.1016/j.memsci.2003.09.019
  13. Lei Li, Jun Zhang and Yuxin Wang, 'Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell', J. Membr. Sci., vol . 226, pp. 159-164, 2003 https://doi.org/10.1016/j.memsci.2003.08.018
  14. S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson and M. Guiver, 'Properties of SPEEK based PEMs for fuel cell application', Catalysis Today, vol. 82, pp. 213, 2003
  15. V. Baglio, A.S. Arico, A. Di Blasi, V. Antonucci, P.L. Antonucci, S. Licoccia, E. Traversa and F. Serraino Fiory. Nafion-$TiO_2$ composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochimica Acta, vol. 50, pp. 1241-1254, 2005 https://doi.org/10.1016/j.electacta.2004.07.049
  16. K.A. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', J. Membr. Sci., vol. 185, pp. 3-8, 2001 https://doi.org/10.1016/S0376-7388(00)00631-1
  17. Lei Li, Li Xu and Yuxin Wang, 'Novel proton conducting composite membranes for direct methanol fuel cell', Mater. Lett. Vol. 57, pp. 1406-1421, 2003 https://doi.org/10.1016/S0167-577X(02)00998-9
  18. B.Kumar, J.P.Fellner, Polymer-Ceramic composite protonic conductors. J.Power Sources, vol. 123, pp. 132-140, 2003 https://doi.org/10.1016/S0378-7753(03)00530-5