ART2 기반 RBF 네트워크를 이용한 여권 인식

김광백*, 오암석**

요 약

출입국 관리 시스템은 여권 소지자, 수백자, 출입국 급지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 ART2 기반 RBF 네트워크를 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소변 연산자와 스마트링 그리고 옴프라 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드의 문자열을 추출한다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 네트워크를 제안하여 여권 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능을 보여주었다.

Passports Recognition Using ART2-Based RBF Network

Kwang-Baek Kim*, Am-Suk Oh**

ABSTRACT

The immigration control system authorizes the immigration of travelers by means of passport inspections such as the judgment of forged passports, the search for a wanted criminal or a person disqualified for immigration, etc. The judgment of forged passports plays an important role in the immigration control system. Therefore, as the pre-phase for the judgment of forged passports, this paper proposed a novel method for the recognition of passport using ART2-based RBF network. The proposed method extracts the area of code and individual codes by applying the Sobel masking, the smearing and the contour tracking algorithm in turn to the passport image. This paper proposed the RBF network that applies the ART2 algorithm to the middle layer, and applied the enhanced RBF network to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

Key words: Passport(여권), Smearing Method(스미어링 기법), Contour Tracking Method(동선 추적 알고리즘), ART2, RBF Network(RBF 네트워크)

1. 서론

세계화와 교통수단의 발달로 인하여 공항 등을 통한 입국하거나 출국하는 내국인 및 외국인의 수가 증가하는 경향을 보이고 있다. 현행 출입국 관리는 사용자가 여권을 제시하면, 이를 용안으로 검색하고 수작업으로 정보를 입력하여 확인하는 과정으로 이루어져 있다. 출입국 관리는 위조 여권 소지자, 수백자, 출입국 급지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하기 위하여 행해진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시기간이 길어 출입국자에게 불편이 따르고 또한...
출입국 부적격자에 대한 정확한 검색이 불분명한 단점이 있어 체계적으로 관리하기 어렵다[1]. 본 논문에서는 이러한 출입국자와 정보 관리 문제를 개선하기 위하여 스미어링 기법, 응용선 추적 알고리즘과 ART2 기반 RBF 네트워크를 이용한 여권 인식 방법을 제안한다. 예를 들면, 시스템은 소련 기술자와 Roberts, 라플라시안 및 미분 연산자이다. 라플라시안 혹은 미분 연산자는 접촉에 의해서 가우시안 필터화와 함께 사용해야 하므로 처리 시간이 많이 소요되는 단점이 있으나 1회당 두께의 에지로 검출할 수 있는 장점이 있다[3]. 소련 연산자는 1차 미분 값과 3차 미분 값을 이용함으로써 강하고 처리 시간도 적게 소요된다[4]. 본 논문에서는 편미분 연산자에 의한 적절적인 소련 연산보다 3차 소멸 마스크를 이용하여 여권 영상에서 에지를 추출한다.

스미어링(smeearing) 방법은 문자로 기법이라고도 하며, 후회로(black)를 수행 또는 수직 방향으로 일정한 크기의 픽셀만큼 늘리는 방법으로 사용된다[5,6]. 본 논문에서는 3 x 3의 소멸 마스크를 적용한 영상에 대해 수직 방향으로 스미어링한 후에 4방향 응용선 추적 알고리즘을 이용하여 코드 영역의 문자열을 추출하고 추출된 코드의 문자열 영역에 대해 수직 방향 스미어링 기법을 이용하여 개별 코드 문자를 추출한다.

RBF(Radial Basis Function)는 결정, 기간, 출력(output) 등의 3개의 측으로 구성된 전방향 신경망(feedforward neural network)이다. 중간에 각기 다른 일을 수행하므로 각 중간에 서로 다른 알고리즘을 적용할 수 있으며 중간의 최적화(optimization)를 분리하여 구성할 수 있다. 중간의 구성은 크게 3가지의 분류로 나눌 수 있다. 첫째로, Fixed Centers Selected at Random으로 은닉층의 노드가 학습 데이터 집합으로부터 임의적으로 선택되는 방식과 둘째, Self-organized Selection of Centers으로 자기 조직화 형식으로 각 중간층의 총 학습을 결정하고, 출력층에서는 지도(supervised) 학습을 적용하는 방식이다[7]. 그리고 마지막으로 Supervised Selection of Centers로 중간층과 출력층을 지도 학습으로 학습을 시키는 방식으로 구분할 수 있다. 따라서 추출된 개별 코드 인식은 ART2(Adaptive Resonance Theory) 기반 RBF 네트워크를 제안하여 여권 인식에 적용한다.

2. 코드 영역과 개별 코드 추출

출입자를 관리하기 위해서, 공항 등에서 출입국자에 대한 인증을 하기 위해서, 본 논문에서는 여권 발급자 데이터베이스에 구축한 정보, 예를 들어, 사전, 주민등록 번호, 국가코드, 여권 번호, 성별 등과 같이 여권에서 획득한 정보들을 자동적으로 인식함으로써 검사 시간을 단축할 수 있고, 위조 여권 여부를 확인할 수 있다. 여권 이미지의 원측 영역에 사전이 부착되어 있고 오른쪽 영역에는 사용자의 정보들이 있다. 그리고 여권의 아래에는 사용자의 정보가 하나의 코드처럼 표시되어 있다. 이 코드를 인식하여 사용자의 정보를 인식할 수 있는 여권 인식 알고리즘을 제시한다. 제시된 여권 인식의 처리하는 과정은 크게 두 단계로 분류된다. 각각 정보를 얻기 위한 개별 코드 문자와 사전 영역을 추출하는 단계와 추출된 개별 코드 문자를 인식하는 단계로 구분된다. 본 논문에서 여권의 코드 문자를 인식하는 처리 과정은 그림 1과 같다. 본 논문에서는 그림 2와 같이 현재 사용되고 있는 여권을 기반으로 하여 코드 영역을 추출한다. 여권 영상에서 사용자의 코드 정보가 있는 배경 영역은 황색으로 구성되어 있으며 코드정보 영역은 44개의 문자가 두 줄로 구성되어 있다.
따라서 본 논문에서는 소벨 연산자와 스키어링, 윤곽선 추적기법을 적용하여 코드 영역을 찾는다. 그림 3은 여권 영상에 적용하기 위한 소벨 마스크이다. 먼저 스키어링 및 윤곽선 추적에 소요되는 시간을 단축하기 위하여 소벨 마스크를 이용하여 예지를 검출하고, 소벨 마스크가 적용된 영상에서 스키어링 및 윤곽선 추적을 이용하여 코드의 문자열 영역을 찾는다.

그림 4는 소벨 마스크를 적용한 영상이다. 소벨 마스크를 적용한 영상을 수평으로 스키어링하여 후보 코드의 문자열 영역을 찾는다.

수평으로 스키어링된 영역들은 그런 5와 같다. 수평 스키어링 후의 영상을 윤곽선 추적 기법을 이용하여 각각의 직사각형 형태의 영역을 찾아, 수평, 수직 비율을 계산하여 비율의 차가 가장 큰 영역을 코드의 문자열 영역으로 추출 한다.

수평 방향으로 스키어링된 영상에 대해 4 방향 윤곽선 추적 알고리즘을 적용한다. 윤곽선 추적 방법은 영상을 주사하면서 연결 요소를 연결하여 윤곽선을 추출하는 방법이다. 본 논문에서는 수평 방향으로 스키어링된 영상에 대해서 4×2 마스크를 이용하여 윤곽선을 추적한다. 윤곽선 추적은 스키어링된 영상상에서 경계 픽셀을 만나기 전까지는 왼쪽에서 오른쪽으로, 위쪽에서 아래쪽으로 스캔한다(8,9). 그림 6은 4 방향 윤곽선 추적에 사용한 2×2 마스크로서 경계 픽셀을 만나면 시작점으로 선택하여 마스크를 x_k에 위치시키고 a와 b에 대응하는 두 픽셀을 고려하여 마스크의 진행 방향을 표 1과 같이 결정하고 x_k가 지나 간 픽셀이 윤곽선이 된다. 마스크의 다음 진행 방향은 a와 b가 배경이면 x_k에서 a, b로의 진행이 불가능하기 때문에 기본 진행 방향인 반 시계 방향으로 이동한다. 또한 a와 b가 경계 픽셀이면 x_k에서 a, b로의 진행이 불가능하지 않아, a점이 가장 가까이 있으므로 x_k는 a점으로 이동한다. 이때 b점점은 경계로 나중에 거처야 할 지점이기 때문에 y_k는 x_k 지점으로 이동한다. a가 경계이고, b가 배경이면 x_k에서 a로의 진행이 가능하고, y_k는 b로 진행한다. 반대로 a가 배경이고, b가 경계이면 x_k에서 b로의 진행이 가능하고, a는 경계가 아니므로 y_k는 그대로 유지하여 우측 방향으로 진행한다. 표 1은 2×2 마스크의 진행 방향을 도표로 나타낸 것으로 a와 b의 값은 0과 1의 값을 가지며, 0과 1은 각각 배경 픽셀과 경계 픽셀이다.

그림 3. 소벨 마스크

그림 4. 소벨 마스크를 적용한 영상

그림 5. 수평 스키어링을 적용한 영상

그림 6. 윤곽선 추적을 위한 2×2 마스크

표 1. 2×2 마스크에 대한 a와 b의 진행방향

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>x_{k+1}</th>
<th>y_{k+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>전진</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>우측</td>
<td>0</td>
<td>1</td>
<td>b</td>
<td>y_k</td>
</tr>
<tr>
<td>우측</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>x_k</td>
</tr>
<tr>
<td>좌측</td>
<td>0</td>
<td>0</td>
<td>x_k</td>
<td>a</td>
</tr>
</tbody>
</table>
따라서 코드의 문자열 영역 추출은 스키어링된 영상에 대해 4 방향 음직동적 방법을 적용하여 픽셀간의 연결 요소를 연결하여 직사각형 형태의 문자열 영역으로 구분한다. 그리고 수평, 수직의 비율이 가장 큰 직사각형 형태의 영역을 코드의 문자열 영역으로 추출한다.

추출된 코드 영역에서 여권을 인식하기 위하여 개별 코드단위로 문자를 추출한다. 추출된 코드의 문자열 영역을 수직으로 스키어링한다. 개별 코드 문자열 수직축의 좌표를 이용하여 개별 코드의 크기를 정한다. 추출된 개별 코드들은 ART2 기반 RBF 네트워크에 적용하기 위하여 정규화 한다.

3. ART2 기반 RBF 네트워크에 의한 여권 인식

ART2 기반 RBF 네트워크에서 중간층의 출력 벡터는 식(1)과 같이 계산하고, 식(2)와 같이 가장 작은 출력 벡터를 가진 노드가 승자 노드가 된다.

\[O_j = \frac{1}{N} \sum_{i=0}^{N} |x_i - w_j(0)| \]
\[O_j^* = \text{Min}(O_i) \]
여기서 \(w_j(0) \)는 입력층과 중간층 사이의 연결 가중치이다.

ART2 기반 RBF 네트워크에서 중간층의 승자 노드는 입력 벡터와 중간층의 출력 벡터 사이의 차이가 최소인 값을 계산하여 승자노드로 선정하고 선정된 승자노드에 대한 유사성의 검증은 식(3)과 같다.

\[O_j^* \leq \rho \]
여기서 \(\rho \)는 경계 변수이고, 승자노드의 출력 벡터가 경계 변수보다 작거나 같으면 같은 패턴으로 분류하고 경계 변수보다 크면 다른 패턴으로 분류한다. 같은 패턴으로 분류되면, 입력 패턴의 유사한 특징을 연결 강도에 반영하기 위해 연결 강도를 조정한다. ART2 알고리즘의 연결강도의 조정은 다음과 같다.

\[w_{j+1}(1) = \frac{w_j(1) \times u_e + x_i}{u_a} \]
여기서 \(u_e \)은 생성된 클러스터에 가입된 패턴들의 개수이다. 중간층의 출력 벡터는 식(5)에 의해 정규화가 되고 출력층의 입력 벡터로 적용된다.

\[z_j = 1 - \frac{O_j}{N} \]

 출력층의 출력 벡터는 식(6)과 같이 계산한다.

\[O_k = f(\sum_{j=1}^{K} w_{kj} \cdot z_j) \]
\[f(x) = \frac{1}{1 + e^{-x}} \]

 출력 벡터는 특이 벡터와 비교하여 오차 신호를 구하고 연결강도를 조정한다.

\[\delta_k = (T_k - O_k)O_k(1 - O_k) \]
\[w_{kj}(t+1) = w_{kj}(t) + \alpha \delta_k z_j \]
여러 인식을 위한 ART2 기반 RBF 네트워크는 그림 7과 같다.
4. 실험 및 결과 분석

본 논문에서 제안된 알고리즘의 성능을 분석하기 위하여 Intel PentiumIII-866MHz CPU와 128MB RAM이 장착된 IBM 호환 PC상에서 C++ 빌더로 여건 인식 시스템을 구현하였다. 실험에 사용된 여건 영상은 HP ScanJet 4200C 스캐너를 이용하여 600×437 픽셀크기를 가진 30개의 여권 영상을 성능 평가 실험에 적용하였다. 그림 8은 그림 2의 여권 영상에 대해 소벨 연산자와 스미어링 그리고 유력선 추적 알고리즘을 이용하여 코드의 문자열 영역과 개별 코드 문자를 추출한 결과이다.

그림 8. 코드 영역 및 개별 코드 추출 결과

30개의 여권 영상에서 추출된 코드 문자열의 수와 개별 코드 문자의 수는 표 2와 같다. 표 2에서의 값은 60개의 코드의 문자열 영역과 6240개의 개별 코드 문자가 모두 추출되었다.

표 2. 코드 문자열 영역 및 개별 코드 추출 개수

<table>
<thead>
<tr>
<th></th>
<th>추출 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>코드문자열 영역</td>
<td>60 / 60</td>
</tr>
<tr>
<td>개별코드</td>
<td>2640 / 2640</td>
</tr>
</tbody>
</table>

30개의 여권 영상에서 추출된 2640개의 개별 코드 문자 중에서 출입국자의 정보로 사용되는 여권의 종류, 국적, 성명, 여권 번호, 주민등록 번호, 성별 등의 개별 코드 문자는 1235개이다. 그리고 15개의 여권 영상에서 추출한 개별 코드를 ART2 기반 RBF 네트워크에 학습한 결과를 표 3으로 나타내었다.

표 3. ART2 기반 RBF 네트워크에 의한 Epoch 수 및 생성된 중간층의 노드 수

<table>
<thead>
<tr>
<th></th>
<th>생성된 중간층 노드 수</th>
<th>Epoch 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART2 기반 RBF 네트워크</td>
<td>387</td>
<td>4832</td>
</tr>
</tbody>
</table>
ART2 기반 RBF 네트워크에서 중간층의 노드를 생성 및 제거하는데 사용되는 경계 변수를 0.15로 설정하는 것이 최적으로 나타났다. 경계 변수를 0.15로 설정했을 때 유사한 패턴들이 서로 다른 중간층의 노드로 분류되지 않았고 중간층의 노드 수도 증가되지 않았다. ART2 기반 RBF 네트워크에 의해 학습된 15개의 여권 영상과 학습되지 않은 15개의 여권 영상에 대해 인식을 실험한 결과는 표 4와 같다. 표 4에서와 같이 30개의 여권 영상에서 개별 코드들이 모두 인식되었다.

제안된 여권 인식 시스템의 전체 화면은 그림 9와 같다.

<table>
<thead>
<tr>
<th>개별 코드</th>
<th>학습된 15개의 여권 영상</th>
<th>학습되지 않은 15개의 여권 영상</th>
</tr>
</thead>
<tbody>
<tr>
<td>인식 수</td>
<td>620 / 620</td>
<td>615 / 615</td>
</tr>
</tbody>
</table>

그림 9. 여권 인식 시스템 화면

5. 결론 및 향후 연구 방향

현재 출입국 관리는 사용자가 여권을 제시하면, 여권을 읽어내 고정 및 수작업으로 정보를 입력하여 여권의 데이터 베이스와 대조하였다. 이러한 중래의 출입국 관리 시스템은 출입국 관리 시스템이 길어 출입국자에 불편을 제공하고 출입국 부적격자에 대한 정확한 검색이 이루어지지 않아 체계적으로 관리하기가 어려웠다. 이러한 중래의 문제점을 개선하기 위해 이미지 기법, 음파추적 알고리즘과 ART2 기반 RBF 네트워크를 이용하여 여권 인식하는 방법을 제안하였다.

본 논문에서는 3×3 소벨 마스크를 이용하여 이미지를 검출하고, 3×3 소벨 마스크가 적용된 영상을 수평 방향으로 스마일링 한 후에 4방향 유표선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하였다. 추출된 코드의 문자열 영역을 수직 방향으로 스마일링 하여 개별 코드 문자를 추출하고 정규화 하였다. 그리고 추출된 개별 코드를 인식하기 위하여 ART2 기반 개선된 RBF 네트워크를 제안하였다. 기존의 RBF 네트워크에서 학습이 완료된 상태 중, 연결강도가 특정값으로 고정된 상태에서 새로운 패턴을 학습시키면 이어 설정된 모든 연결 강도에 영향을 주기 때문에 신경망을 다시 학습시키는데 많은 시간이 소요되는 단점과 신경망에 학습되지 않은 전체 새로운 형태의 패턴이 들어오는 경우에는 이전의 학습된 유사한 패턴으로 분류하는 단점이 있다. 이러한 단점을 해결하기 위해 학습되지 않은 새로운 패턴이 들어오면 새로운 클러스터를 생성하고 기존의 패턴에 영향을 주지 않게 하기 위하여 ART2 알고리즘을 RBF 네트워크에 적용하였다.

제안된 여권 인식 방법에 대해서 30개의 여권 영상을 적용한 결과, 30개의 여권 영상에서 개별 코드들이 모두 추출 및 인식되었다.

향후 연구 과제로는 제안된 여권 인식 방법을 다양한 국내외 여권 영상에 적용할 것이고 향후 여권을 판별할 수 있도록 글로 인증 방법에 대해 연구할 것이다.

참고 문헌