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MPI: A Practical Index Scheme for
XML Data in Object Databases

Ha-Joo Song*

ABSTRACT

In order to access XML data stored in object databases, an efficient index scheme is inevitable. There
have been several index schemes that can be used to efficiently retrieve XML data stored in object databases,
but they are all the single path indexes that support indexing along a single schema path. Ience, if a
query contains an extended path which is denoted by wild character (‘+), a query processor has to examine
multiple index objects, resulting in poor performance and inconsistent index management. In this paper,
we propose MPI (Multi-I’ath Index) scheme as a new index scheme that provides the functionality of
multiple path indexes more efficiently, while it uses only one index structure. The proposed scheme is
easy to manage since it considers the extended path as a logically single schema path. It is also practical
since it can be implemented by little modification of the B —tree index structure.
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1. INTRODUCTION

As XML (eXtensible Mark-up Language) is
emerging as a standard format for data exchange
and storage, the research on efficiently storing and
retrieving XML data in object database manage-
ment systems (ODBMS) or relational database
management systems (RDBMSs) is becoming more
prevalent[3,1,6,4,5]. Especially ODBMS are getting
popular as a storage system for XML data, since
their data model is similar to that of XML, and
XML queries can be supported by the existing ob—
ject query language (OQL) processors. XML quer-
ies, however, have some features that are not di-
rectly supported by the existing OQL processors,
for instance, the use of more extensible path
expressions. Following is an example of this.

Fig. 1-(a) shows a part of an XML DTD (docurnent
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type definition) which defines the structure of an
XML data, and corresponds to a schema of a
database. Fig. 1-(b) illustrates a part of QDB sche-
ma, mapped from the XML DTD in Fig. 1-(a). By
converting the XML DTD into an ODB schema,
XML data can be stored in an ODBMS. In Fig.
1-(b), rectangles and strings in italic style denote
classes and attributes, respectively. Usually ele-
ments and attributes of XML DTD are mapped to
classes and attributes of the ODB schema. The de-
tails about the conversion from XML DTD to ODB
schema can be found in{4]. Assuming that the at-
tribute ‘mdate’ denotes the date when the corre-
sponding part of XML data has been last modified,
XML data stored in an ODBMS can be queried as
follows.

® XML query example 1:
Retrieve all books of which subsection body
have been last modified on Oct. 1, 2004.

for $b in doc ("http.//...”) /publications/publi-
cation/book

let $mdate ‘= $b/chapter/section/subsection/
body/mdatel 72004:10:01"]

where count($mdate) > 0

return $b
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Fig. 1. Example XML DTD and corresponding ODB schema.

To process queries like the above which include
path expressions, a query processor has to visit a
set of objects that references one the other. This
kind of an operation is termed as the object navi-
gation (or pointer chasing). Since the query pro-
cessor has to visit lots of objects during the object
navigation, it incurs a lot of overheads. The over-
heads increase when the objects to be visited are
dispersed over a disk[15]. Hence, index schemes
such as nested index, path index[2], multi index,
ASR(access support relation)[10], and hierarchical
join indexes[15] have been proposed to improve the
performance of the object navigation. Meanwhile,
the following type of a query which includes a wild
character “«’ in its path expression is also possible

to denote multiple paths concisely.

* XML query example 2:
Retrieve all publications of which the body has
been last modified on Oct. 1, 2004.

for $b in doc ("http://..”) /publications/publi-
cation/book

let $mdate := $b/x/body/mdatel "2004:10:01"]
where count($mdate) > 0

return $b

<IDOCTYPE publication {
<ELEMENT publication (monograph | book)>
<IELEMENT monograph (editor+ section+)>
<!ELEMENT editor (monograph+)>
<IELEMENT book (title,author+ preface,
chapter+,appendix)>
<IELEMENT chapter (title,author* body*,section+)>
<!ELEMENT section (title,body*,subsection+)>
<IELEMENT subsection (title,body+)>
<'ELEMENT body (paragrlfigureltable)>
<IATTLIST body mdate #CDATA>

(a) XML DTD

The character *" is a wild card that can be sub-
stituted by any path or element as long as the re—
sulting path expression complies with the given
XML DTD or ODB schema. We define paths (or
path expressions) with a ‘¥’ character inside as ex-
tended paths (or extended path expressions) to dif-
ferentiate them from the normal single paths (or
single path expressions). A clear definition of an
extended path will be given in Section 2. Hence,
in query example 2, the extended path b/*/body/
mdate stands for a set of single paths-b/chapter/
body/mdate, b/chapter/section/body/mdate and b/
chapter/section/subsection/body/mdate. An extended
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path can also be used to denote paths that are oth-
erwise impossible to denote. Following is an example.

e XML query example 3:
Retrieve all monographs of which the body has
been last modified on Oct. 1, 2004.

for $m in doc ("http://...") /publications/publi-
cation/monograph

let $mdate = $m/*/body/mdatel "2004:10:01"]
where count($mdate) > 0

return $m

Thé extended path in above query denotes sev-
eral paths like m/section/body/mdate, m/editor/
monograph/section/body/mdate, m/editor/mono-
graph/editor/monograph/section/body/mdate, and
so on. Since there is a cycle in the path from mono-
graph to editor, above extended path can denote
arbitrary long paths. In this case, it is almost im-
possible to support indexing with the previously
proposed index schemes.

We categorize the previously proposed index
schemes mentioned in the above paragraphs as
‘single path index scheme’, since they support the
indexing along a single schema path. The use of
single path indexes to enhance the performance of
extended paths incurs some problems. Following

describes two major cases of them.

® The first problem:

It is difficult to manage the indexes, since the
database administrator has to find out the in-
dividual paths of an extended path to build and to
remove single path indexes for it. Therefore, it is
likely that single path indexes are allocated on
some of the single paths, while others are not. This
results in an inconsistent index allocation. Moreover,
some single path indexes can be even built on the
wrong paths by mistake, resulting in the overall
performance degradation caused by the manage-
ment cost of the wrong indexes. The managefnent
difficulty is expected to increase as the number of

single paths in an extended path increases.

* The second problem:

Even though the management of single path in-
dexes is done automatically by the database sys—
tems, the number of indexes increases as the num-
ber of single paths consisting of an extended path
does. Hence, the storage cost increases drastically,
while the retrieval performance degrades. Especially,
the retrieval performance for the point queries (or

exact match queries) significantly degrades.

In this paper, we propose ‘multi-path index
(MPI) scheme’ as a new index scheme for the ex-
tended path expressions. The proposed scheme pro-
vides relatively good performance over the single
path indexes, and is easy to manage. The rest of
the paper is organized as follows: Assumptions for
the proposed index scheme and definitions of terms
used in this paper are explained in Section 2. In
Section 3, we introduce our new index scheme,
multi-path index, for indexing extended paths. In
Section 3.5, we briefly summarize related work.
Section 4 presents the results of the performance
evaluation. Finally, conclusions from our study and

areas for future research are given in Section 5.

2. PRELIMINARIES

In this section we briefly explain the assump-
tions based on which it is possible to use proposed
index scheme, and next describe definitions of
terms used throughout this paper.

2.1 Assumptions

We assume the following characteristics of XML
DTD for which the proposed scheme will be used.

First, we regard an XML DTD as a unit of name
space. Hence, elements and attributes that have
identical names but are defined in different DTDs
are considered to be different from one another.
This assumption is also applied to ODB schema
converted from the XML DTD.

Second, the proposed scheme does not support
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indexing along a path specified by IDREF type
attributes. This is due to the fact that IDREF type
attributes can reference objects of all types, mak-
ing it intractable to find all the possible paths in
advance by examining the XML DTD or ODB

schema.

2.2 Definitions

We use the term ‘element’ and ‘class’ inter-
changeably, since elements of XML DTDs are
converted to classes of ODB schema. A ‘schema
path’ or simply a ‘path’ is defined as a series of
elements or attributes separated by ‘.’ character. A
path used in a query is called a ‘query path’. A set
of objects which references one another is termed
as a ‘path instance’ or an ‘object path’. We define
traditional path expressions as single path ex-
pressions, and path expressions with =’ inside
them as ‘extended path expressions’. Following is
a general form of an extended path expression.

o/ */ pr

where pr and p- are called as a pre-path and a
post-path, respectively and both are single path
expressions without '+’ inside them. Therefore, path
expressions like book/chapter/section and section/
subsection/title are single path expressions, while
book/*/title and book/chapter/+/body/mdate are
extended path expressions. book and book/chapter
are the pre-paths, and title and body/mdate are the
post-paths. An extended path expression may con-
tain cycles inside them as it can be seen from pub-
lication/*/section/title.

3. MULTI-PATH INDEX SCHEME

In this section, we describe how the multi-path
index is implemented. For a given extended path,
a multi-path index is built in three steps:

1. The first step is to find out all paths that are
compliant with the given extended path ex-
pression, and allocate a path identifier (PID)
for each paths found.

2. The second step is to collect index data for
all the paths found in first step and to store
the result in temporary files.

3. The third step is to build the multi-path index
structure.

Since the second step is processed by the query
processor, we do not explain it in details, but we
elaborate on

1. allocating PIDs to possible schema paths in
the first step,

2. storage structure of the multi-path index, and

3. its retrieval and update methods.

3.1 Allocating Path ldentifiers

For an extended path p, we define ‘path extent
of p’ as a set of all paths covered by path p and
denote it as &(p). The paths which constitute the
E(p) are termed as ‘member paths of p’. Algorithm
1 illustrates the algorithm that searches the path
extent of a given extended path p (an input of
Algorithml) and then allocates PIDs to member
paths of p. Another input to the Algorithm 1 is the
XML DTD used to store XML data in the ODBMS.
As path expressions can be possible between pa-
rent and its child elements or between an element
and its attributes of an XML DTD, Algorithm 1
makes use of these relationships to find out all the
possible member paths of the given extended path.
Before we explain details of Algorithm 1, we define
head(p) and tail(p) for a given extended path p as
the first element and the last element (or attribute)
of path p, respectively. We also define children(e)
as the set of all child elements and attributes of
an element e and a node means either an element
or an attribute.

Algorithm 1 first initializes all variables and
checks the validity of pre-path (py) and post-path
(pr) of path p. It then calls search_single_paths to
look for all the member paths from fail(py) to head(p:).
search_single_paths stops if given element e is a
leaf element which does not have any child. In case
e has children, search_single_paths pushes e into
the stack which keeps track of current search path.
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> Input: XML DTD, p : extended path expression
: Output: &p) and PIDs for member paths in &p)

&p)—, pr— pre-path(p), pre post-path(p), cpl(p) <@

: check validity of path pr and p.

* from < tail(pr ), to <~ head(p,):

* initialize stack

. search_single_paths(from);

. search_cycle_paths();

: assign serial numbers for every member paths in €(p);

. procedure search_single_paths{e)
;if e is a leaf element then

return;

:end if
. if e already exists in stack then

return;

cend if
* push e into stack;
*for all ¢ € children(e) do

if ¢ = to then

&p) < E(p) U concatenate_path (path in stack, ¢) ;

else if ¢ is an element then
search_single_paths (¢);
end if
end for
pop stack;
end procedure

procedure search_cycle_paths()

for each path p in € (p) do
for each n in elements(p) do

find_cvcle_pattern(n);

end for

end for

pattern_generalization();

compose_cycle_pattern();

end procedure

procedure find_cycle_pattern(n)

if n is a leaf element then
return;

end if

if n already exists in the stack but not at the bottom then

return;

else if 7 is the bottom node in stack then
cp(p) < ¢cp(p) U concatenate (path in stack, n);
return;

end if

push n into the stack;
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Algorithm 1. Continued

52: for all ¢ € child(n) do

53: if ¢ is an element then

54: search_cycle_path (¢);
55! end if

56. end for

57: pop stack;

58: end procedure

59:

60: procedure pattern_generalization()

61: cp(p) < sort cp(p) by the number of nodes and alphabetical order in a pattern

62: for each s in c¢p(p) in reverse order do

63: for each ¢t € all the paths before s in cp(p) do

64: if s contains all nodes in ¢ then

65: change the matching part of s with £,
66: end if

67: end for

68: end for

69: end procedure

70:

71: procedure compose_cycle_pattern()
72: for all s € &p) do

73 for all ¢ € c¢p(p) do

74: if ¢ has a sub-—path t of s then

75: compose s with ¢ (&€(p)) < replace t with ¢ from s
76: end if

17 end for

78: end for

79: remove duplicated cycle paths from &(p)
80: end procedure

Example 1 For the XML DTD in Figure 1-(a), the member paths of the extended path publication/

*/mdate and their PIDs are as follows:

Then, for each child ¢ of e, search_single_paths
checks if ¢ is identical with to (=head(p:)). If so,
search_single_paths concatenates the current path
stored in the stack and ¢, and inserts the con-
catenated path into €(p). For the other cases,
search single path either continues the search by
recursive call or probes next child ¢ of e.

After all the single paths of p have been searched
out, it calls search_cycle_paths to extract cycle
patterns and generate cycle paths. search_cycle_
paths first calls find_cycle_pattern to get all cycles
related to distinct nodes in single paths using a
graph traversal algorithm, and then calls pattern_
generalization to make the cycle patterns more
general. Therefore, we use only the most general

cycle pattern to make cycle paths. The generalized
cycle patterns (cp(c)) are then merged to S(p).
During the merge, redundant paths that can be de-
noted by other expressions are removed. All the
generated cycle paths are inserted into & (p). After
all the member paths inside the given extended
path have been identified, PIDs are allocated to

them.

publication/book/chapter/body/mdate - PID * 1,
publication/book/chapter/section/body/mdate -
PID : 2,

publication/book/chapter/section/ subsection/bo
dy/mdate - PID : 3
publication/(monograph/editor)*/monograph/se-
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ction/body/mdate - PID : 4
publication/(monograph/editor)*/monograph/se
ction/subsection/body/mdate - PID : 5

3.2 Storage Structure of the Multi-Path Index

Index data are stored in a multi-path index of
which the structure is same as a B -tree except
that the leaf record structure is modified from that
of a B —tree. A leaf record of a multi-path index
contains following information.

e record header - information about the record

such as record length and key size

e key value - index key value

e # paths - number of member paths in OID list

e PID - PID of the member path

e #0IDs - number of OIDs of corresponding

member path

e OIDs - list of OIDs

The PIDs used in leaf record are allocated using
the algorithm described in the previous section.

The structure of internal nodes of the multi-path
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index is the same as that of B+-tree internal nodes.
Fig. 2 illustrates the structure of a leaf record in
a multi-path index. Example 2 constructs an ex-
ample muti-path index.

Example 2 Fig. 3 illustrates XML data stored
in an object database that are compliant with the
XML DTD in Fig. 1. Circles represent objects.
-Labels inside the circles and the underlined strings
denote OIDs and the values of mdate attribute of
the corresponding objects, respectively. The object
00 labeled ‘publications’ denotes the extent object
that keeps the collection of OIDs of the instances
that belong to the ‘publication’ class, and the ob-
jects, ol, 02, 03, and o4 are the Toot objects (instances)
of ‘publication’ classes. Followings illustrate the
“structure and information kept in a multi-path in-

dex i along the path publication/+/mdate.

e Multi-path index along the path: publication/

*/mdate
- P; : publication/*/mdate
- Di : backward

record header

key value ] # paths I (PID1, #0IDs, OIDs) ’

l (PIDn, #0IDs, OIDSLI

Fig. 2. The leaf record structure of a multi-path index. A variant of leaf node in a B+-tree
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H; @ publication

T: © mdate

E; © publication/book/chapter/body/mdate,
publication/book/chapter/section/body
/mdate, X
publication/book/chapter/section/subse
ction/body/mdate
publication/(monograph/editor)+/mono
graph/section/body/mdate
publication/{monograph/editor)*/mono
graph/section/subsection/body/mdate

Book-keeping information along the member

paths
publication/book/chapter/body/mdate -
PID : 1,
publication/book/chapter/section/body
/mdate - PID : 2,
publication/book/chapter/section/subse
ction/body/mdate - PID & 3,
publication/(monograph/editor)*/mono
graph/section/body/mdate ~ PID : 4,
publication/(monograph/editor)*/mono
graph/section/subsection/body/mdate
- PID @ 5,

After the member paths have been identified and

allocated with PIDs, collect the pairs of key values

and

and

pointers (OIDs) along every member paths,
then insert them into-the index. Followings

illustrate how this process is done.

1.

Search all the path instances of member path
identified by PID 1, and then collect pairs of
key values and OIDs

(‘2004:08:04', o4),

(2004:12:31", 03)

. After insert above data into index, the leaf

records will be as follows.
('2004:08:04, 1, (1, 1, o4)),
(2004:12:31°, 1, (1, 1, o3))

. The leaf records after we have-done the same

processing for path instances of PID 2
(‘2004:01:01°, 1, (2, 1, 03)),

('2004:07:28', 1, (2, 1, od)),
(2004:08:04', 1, (1, 1, o4)),
('2004:12:31°, 1, (1, 1, o3))

4. The leaf records after we have done the same
processing for path instances of PID 3
('2004:01:01°, 2, (2, 1, 03) (3, 4, 03, 03, 03, 04)),
('2004:07:28', 1, (2, 1, o4)),

('2004:08:04', 2, (1, 1, o4) (3, 2, 03, 03)),
(‘2004:12:31°, 2, (1, 1, 03) (3, 2, o4, 0d))

5. The leaf records after we have done the same
processing for path instances of PID 4D
(‘2004:01:01’, 2, (2, 1, 03) (3, 4, 03, 03, 03, 04)),
('2004:07:28, 2, (2, 1, 04) (4, 1, 02)),
('2004:08:04’, 2, (1, 1, 04) (3, 2, 03, 03)),
('2004:12:31°, 2, (1, 1, 03) (3, 2, o4, 04))

6. The leaf records after we have done the same
processing for path instances of PID5 (final).
Fig. 4 shows physical structure of a multi-
path index after inserting the following leaf
records. In this figure again, we can find that
the structure of internal nodes in a multi-path
index is the same as that of a conventional
B -tree, while the structure of leaves are little
bit different. Hence the traversal, insertion and
deletion algorithms of a B -tree can be used
for a multi-path index with slight modification,
which will be explained in later sections.
('2004:01:01, 3, (2, 1, 03) (3, 4, 03, 03, 03, 04)
(5, 1, ol)),

(2004:07:28, 3, (2, 1, 04) 4, 1, 02) (5, 2, 0], 02)),
(‘2004:08:04’, 2, (1, 1, 04) (3, 2, 03, 03)),
(‘2004:12:31°, 2, (1, 1, 03) (3, 2, 04, o4)

3.3 Retrieval and Update Method of the Muiti-
path Index

Retrieval method of a multi-path index 1s differ-
ent from that of a B+~tree only at the leaf records.

Before starting to traverse B+-tree nodes, the path

1) Record headers have been omitted in leaf records
for space reasons.
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in the leaf node

Fig. 4. The internal and leaf node structure of a multi-path index.

Algorithm 2. Algorithm for traversing a multi-path index

1. Input: key(key value), pids(set of PIDs)

2.

3: traverse index nodes using key in the same manner in a I3 tree traversal algorithm
4 if key not found then

5 return;

6: end if

7

8 r € leaf node where the key resides

75 & ¢

10: for all PID in r do

11 if PID exists in pids then

12: s € s U OIDs corresponding to this PID
13: end if

14! end for

15: return s

extent of the search path is first calculated, and
their PIDs are determined. Traversing from the
root to the leaves is the same as in a B+-tree, but
the multi-path index retrieves objects with the
speéified PIDs from the leaf records. Algorithm 2
shows the traversal algorithm used in a multi-path
index.

Example 3 This example illustrates the query
processing using the multi-path index shown in
Example 2 for the following queries.

1. for $p in doc ("http.//..”) /publications/

publication

let $mdate ‘= $p/book/chapter/section/+/
mdatel "2004:12:.31" ]

where count($mdate) > 0 return $b

2. for $p in doc ("hitp.//..”) /publications/

publication
let $mdate = $p/book/chapter/*/mdate
[72004:08:04"]
where count($mdate) > 0 return $p

3. for $p in doc ("http://..") /publications/
publication
let  $mdate =
[72004:01:01"]
where count($mdate) > 0 return $p

$p/monograph/*/mdate

In the first query, the path extent of query path
conststs of publication/book/chapter/section/body/
mdate and publication/book/chapter/section/sub-
section/body/mdate. Corresponding PIDs can be
found using the information kept in the multi~path
index, and they are 2 and 3. Traversal from root
node to leaf is done using the key ‘2004:12:31°, and
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Algorithm 3. Algorithm for insertion to a multi-path index

1t Input: key(key value), objid(OID), pid(PID)

2. traverse index nodes using key

3: if key found then

4. append objid in OID list of corresponding PID

5 else

6: allocate a new leaf node, and insert key, pid, objid
7. end if

8

. adjust tree structure in the same manner as in a B tree

Algorithm 4. Algorithm for deletion to a multi-path index

. Input: key(key value), objid(OID), pid(PID)
: traverse index nodes using key
. r € the leaf node found
: remove (pid, objid) pair from r
. if given pid has no OID then
remove corresponding (PID, OID) pairs
end if
. if given r has no OID then
remove r from the index
end if

= RO W

—

: adjust tree structure in the same manner as in a B tree

then, OIDs with PID 2 or PID 3 are chosen. Therefore,
the result is o4. In the second query, PID 1, PID
2, and PID 3 meet the query path. Hence, the ob-
jects with key ‘2004:08:04" and with PID 1, PID 2
or PID 3 are chosen, resulting in a query result of
03 and o4. The query path of the last query corre-
sponds to PID 4 and PID 5 and the index key is
‘2004:01:01". Hence the query result is ol.

The multi-path index scheme is the same as the
nested index schemel2} in that both schemes keep
the key values and OIDs of index path ends. Therefore,
in the case where a path instance is updated (deleted
or inserted), the path instance is traversed before
and after the actual update (deletion or insertion)
happens. Thereby the changed object pairs are
identified and reflected in the multi-path index. A
detailed description on the update method can be
found in{2]. Algorithm 3 and Algorithm 4 elaborate
on the insertion and traversal algorithm of a mul-

ti-path index respectively.

3.4 Related Work

Index schemes such as nested index, path index,

multi~index, ASR, and object skeleton{9] have been
proposed to support object navigation.along a path.
These schemes differ in retrieval performance, up-
date cost and storage cost, and have their own
merits and demerits. However, as they are origi-
nally designed for indexing along a single path,
they are all inadequate for indexing along an ex-
tended path as described in Section 1

Uniform indexing scheme(8] allocates a unique
path identifier for every class and its sub-classes
that exist along a given index path, and keeps the
path identifier for every pointer or object identifier
(OID) in the leaf records of the index. With the use
of path identifier, a uniform index can support both
functionality of a class hierarchy index and a path
index. The uniform scheme is similar to the pro-
posed multi-path index scheme in that both schemes
use path identifier and are very practical because
both can be implemented by little modification of
B+-tree structure. But, the uniform scheme differs
from multi-path index scheme in that it is logically
an index scheme for a single path, although it can
selectively refrieve a path that consists of the speci-

fied classes along a path.
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[13) proposed a group of index schemes - 1-in-
dex, 2-index and T-index - for the path indexing
of a semi-structured data. When we call all these
index schemes as Milo's index scheme, it can be
regarded as a composite structure of groups of ob-
ject identifier pairs and automata which guides the
selection of target groups of OID pairs. In other
words, Milo’s index scheme builds an ASR[11] for
every possible paths and selects a set of ASRs for
a given regular path expression using the auto-
mata. The ASR used in Milo's index scheme keeps
only OIDs of specified classes along a path. Hence
Milo’s index scheme can be viewed as a group of
single indexes which still has the second problem
described in Section 1.

DataGuidel7] used in Lore[14] have been proposed
as an efficient index scheme for a storage system
for the semistructured data. DataGuide, however,
can be regarded as an extent object that collects
OIDs of objects residing on the same path from
a root object, and hence is a path index for the root
object. Index Fabric[16] is similar to DataGuide in
that it also keeps all the paths from the root objects,
but is not applicable for path queries including pa-
rent~child relationships among elements. APEX
[17] and D(k) - index[18] introduced an adaptive
path index scheme that can dynamically update its
structure according to the changes of query
workloads. Graph Indexingl19] proposed a gener-
alized indexing technique that retrieves sub-graphs
quickly from a large graph data. Graph Indexing
not only provides an elegant solution to the graph
indexing, but also demonstrates how database in-
dexing and query processing can benefit from data
mining. Shasha et al[20] extends the pattern-
matching based algorithms for fast search in trees
and graphs. It could be used for direct support of
queries on the data types, or could be used as a

preprocessor for join-like algorithms.
4. PERFORMANCE TEST

In this section, we compare the performance of

the proposed scheme with a single path index
scheme. We used the nested index schemel2] as
a single path index scheme to be compared with
the proposed scheme, since both schemes keep the
pairs of key values and OIDs of corresponding ob-
jects at the ends of a path, and the nested index
has the best retrieval performance among the sin-
gle path indexes. We use MPI and GNI to denote
the proposed scheme and the nested index scheme,

respectively.

4.1 Test Environment

Fig. 5 shows the path expression to be used in
the test in ODB schema. In this figure, C: and G
are the starting class and the ending class of the
extended path, respectively. There are N distinct
member paths between the two classes. kattr de-
notes the index key attribute. Table 1 illustrates
the parameters used in this test. Since a nested in
dex can be built along a schema path, we used N
nested indexes so that each nested index cover a
member path. In case of multi-path index, only one
index structure is used regardless of the number
of member paths.

¢ denotes the number of objects (instances) of
C. f represents the fan-out which means the num-

ber of C, objects referenced by a C, object. For

PID,

PID,

Fig. 5. ODB Schema to be used in the Test.
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Table 1. Test parameters

Parameter Test values
c 1000
k! 8, 64
2, 4,6, 8 10
f 1, 5 10
kr 1, 10, 100
rgr 1%, 5%

instance, when we set N = 8 and f = 10, it means
that a C; object directly or indirectly references 10
distinct C, objects along each member path, and
there are 8 distinct member paths between C; and
C». Hence a C; object is directly or indirectly con-
nected to 80 C, objects. If ¢ is set to 1000 with
the above configuration of N and f, there are 80,000
C, objects. kI and kr denote the size of the index
kev and the number of the C, objects with the same
key value, respectively. rgr is used only in key
range retrievals and denotes the portion of key
range to be retrieved compared with the total key
value range. We have compared the storage cost
and the retrieval cost of MPI and GNI. The storage
cost is measured by the number of disk pages used
to store the indexes. Retrieval cost is categorized
into two types: exact match retrieval cost and
range retrieval cost. The exact match retrieval is

to find an object whose attribute value exactly

1000
—8— MPI-kr(1)
900 I @ GNitke(1)
800 —a&— MPI-kr(10)
eéx -+ GNI=kr(10)
700 [ e MPI-ki(100)
»
& 600 ---0-- GNI-kr(100) r
Q
% 500 | LB 4
S 400
H*
300
200 4
100

# of member paths

(a) ki=8, =10

matches the given value, while the range retrieval
is to find objects with a given key range. The re-
trieval cost is measured by the time to process a
retrieval operation.

MPI and GNI are built as follows: We build N
nested indexes along the N member paths from C
to Cpkatr. MPI allocates unique PIDs to every
member path using the algorithm 1 as shown in
Fig. 5. All indexes are configured to have its own
disk segment (a contiguous set of disk pages) so
that index pages of an index are clustered together.
Fig. 6 illustrates the storage cost of indexes with
varying the number of member paths (V) and size
of key (k{). MPI uses more storage space than GNI
does in case when kr = 1. This is due to the fact
that the leaf records of MPI are larger than those
of GNI and therefore MPI uses more leaf nodes
than GNI does. However, the difference in storage
cost is reduced as the size of key (kl) increases,
since when k! is large, the size difference between
the leaf records of MPI and GNI is not so big as

it is when k! is small. When kr is set to 10 or 100,

MPI uses less storage space than GNI does since
MPI stores more pointers with the same key value
in the a leaf record than GNI does, and hence uses
less leaf records. Above effect is more significant
when k! increases as shown in Fig. 6-(b). Fig. 7
shows the result of exact match retrieval cost

3500
—8— MPI-kr(1)
s000 R GNi—kr(1)
—A— MPI-kr(10)
---&5-- GNI=kr(10)
2500 —e— MPI-kr(100)
---@--- GN-kr(100)
2000 |

1500

# of disk pages

1000

# of member paths

(b) ki=64, =10

Fig. 6. Storage cost comparison.
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0.004
—a— MPlkr(1) é
00035 | @ GNi-ki(1) :
—a&— MPI-kr(10)
0.003 | & GNi-ki(10)
= —o— MPki{100)
800025 | o GNIki(100)
@ _.l'
E o002 | ’
pel
o
£ 0.0015 |
s A;:fﬂ'
0.001 |
0-0005 q;4<*_//'
!
0
2 4 6 8 10

# of member paths
Fig. 7. Exact match retrieval cost comparison (k/=8,
f=10).

comparison when k! = 8 and f = 10. Since we have
obtained the similar results in tests with other con-
figurations, we do not present other test results.

From Fig. 7, MPI provides better exact match
retrieval performance regardless of key size and
replication of key values. The performance gain
becomes larger as the number of member paths
increases. Exact match retrieval cost is mainly de-
termined by the height of indexes used. Since GNI
has to examine N indexes to process a retrieval

on an extended path, its exact match retrieval cost

is equal to ZL\V H, where H; denotes the height of
the index i. MPIL, however, uses only one index
structure and its index height does not vary so
much as the N increases (mostly 3~5). Therefore
its exact match retrieval cost is almost constant
regardless of N.

Fig. 8 shows some results .of range retrieval
comparison. We have observed that MPI provides
better performance as more key values are replicated.
It can be explained as follows: As more key values
are replicated, MPI uses-smaller number of leaf no-
des and hence reads less number of disk pages for
the same key range retrieval than GNI does. When
key values are not replicated (kr = 1), though MPI
uses more leaf nodes, the performance of MPI is
better than that of GNI except for the test config-
uration with kl = 8 and rqr = 5%. In these cases,

MPI has to visit more disk pages than GNI does,
but the leaf nodes of MPI are clustered better than
those of GNI so that MPI takes less time to retrieve
the leaf nodes. Clustering effect, however, dimin~
ishes as the retrieval range (rgr) increases, since
MPI has to visit a lot more disk pages than GNI
does. But, in case of GNI, we have not considered
the time needed to merge the retrieval results from
individual indexes, which is sometimes needed for
the range retrieval with the key value order. Test
results shown in Fig. 8 doe not includes time for
the merge. Since MPI does not need such merging
step, MPI is more efficient for above cases. Hence,
MPI is more useful to process index retrievals with

key order.

5. CONCLUSION

ODBMS are emerging as a prominent storage
for XML data, and queries on XML data can be
expressed using extended path expressions. In this
paper, we propose a multi-path index scheme as
a new index scheme for extended path expressions.
Multi-path index scheme is implemented by allo-
cating a unique path identifier for each member
path, single path and cycle path, in a given ex-
tended path, and storing both OID and PID in the
modified leaf records of a B'~tree . Multi-path in-
dex provides a good indexing performance, since
queries can be supported by looking—up only one
index, not by scanning multiple indexes and merg-
ing the results from each indexes. Multi-path index
is easier to manage than the approaches based on
multiple single path indexes. It is also practical
since it can be implemented by slightly modifying
the leaf records of a B —tree, and thereby, does not
need any new concurrency control or recovery
scheme that are usually required for a new type
of indexes. Using path identifiers can also be ap-
plied to existing index schemes such as path index,
ASR and join index hierarchies by a minor mod-

ification on them.
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Fig. 8. Range retrieval
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