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Blind Source Separation Using Variable Step-Size
Adaptive Algorithm in Frequency Domain

Keun-Soo Park*, Kwang-Jae Lee”, Jang Sik Parkw, Kyung Sik Son

ABSTRACT

\ARAS

This paper introduces a variable step-size adaptive algorithm for blind source separation. From the
frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in
each frequency bin. This algorithm varies a step-size according to the magnitude of input at each
frequency bin. This guarantee of the regular convergence in each frequency bin would become more
efficient in separation performances than conventional fixed step-size FDICA. Computer simulation results
show the improvement of about 5 dB in signal to interference ratio (SIR) and the better separation quality.
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1. INTRODUCTION

Recently, blind source separation (BSS) is a
technique for estimating original source signals
using only observed mixtures. The adjective
“blind” stresses the fact that firstly sources are not
known and secondly no information is available
about the mixing information. A typical modeling
is to record two people talking at the same time
using two microphones. The recorded signals
would then of course consist of a mixture of the
two speech sounds. The applied algorithm then
tries to estimate the inverse channel and force the
recorded signals to be independent of each other
in order to separate the signals[1]. BSS based on
independent component analysis (ICA) technigue
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has been found effective in signal separation com-
paring other BSS methods. ICA is a statistical
method that was originally introduced in the con-
text of neural network modeling[2].

Methods for constructing separation filters can
be classified into two approaches. The first one is
a time-domain approach (TDICA)[3], where the
coefficients of the separating filters are calculated
directly in the convolved mixture model. It has an
advantage in that ICA is applied to instantaneous
mixtures, which are easier to solve than convolved
mixture in the time domain. The other is a fre-
quency domain approach (FDICA)4,5], where
the frequency responses of the separating filters
are first calculated, and then the time-domain rep-
resentation of the filters is obtained by applying
an inverse discrete Fourier transform (DFT) to
them. FDICA for convolutive mixtures can be per—
formed efficiently, where the analysis is applied
separately in each frequency bin independently.
Computationally it may be lighter to move to the
frequency domain, as convolutions in the time do-
main become efficient multiplications in the fre-
quency domain.

This paper deals with the frequency domain
approach. Frequency-domain approach transforms

the observed signals into the each frequency com-—
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ponent bin by short time DFT frame by frame.
Then optimize the inverse of the mixing component
in each frequency bin. Finally, the optimized
weights at each bin can reconstruct the fullband
separated signals in time-domain. In FDICA, we
have to consider complex data in general. For this
purpose Smaragdis[4] proposed a complexvalued
ICA algorithm, which was an extension of infomax
algorithm[1]. The nonlinear function use in the ex-
tension was based on the Cartesian coordinates of
a complex number. The nonlinear function is ap-
plied separately in the real and imaginary parts.
This type of nonlinear function has been widely
used by other researchers[6]. However, there are
disadvantages for converging to the optimal
solution. Firstly, the separation performance is sa-
turated before reaching a sufficient performance
because the independence assumption collapses in
each frequency bin. Secondly, the permutation
among source signals and indeterminacy of each
source gain each bin. As for these disadvantages,
various solutions have been already proposed(7,8].
The separation is performed independently bin to-
bin, the convergence of the separation matrix is
nonuniform at each bin.

As discussed above sentence, the non-uniform
convergence at each frequency causes presatura—
tion or permutation. Hence, in order to resolve
FDICA problems, we propose a new algorithm. in
which the variable step-size is used. Proposed
method is to adopt a variable step-size which is
normalized by the input signal in each bin. This
modified version is only modest increase in com-
putation about 15%[9] over the conventional ICA
algorithm, while convergence time is reduced in
some instances by about a factor of 2. This uniform
convergence at each bin reduces the effects of a
permutation and pre-saturation problem. A good
control of step-size is for faster convergence and
better separation quality.

With the results of simulations on separating
speech signals in a convolved mixture, we compare
the behaviors of proposed algorithm with conven-—

tional ICA. Then this paper discusses the perform-

ance about the efficient separation.

2. FDICA APPROACH

In this study, the number of microphone is K

and the number of multiple sound sources isL.
When the multiple sound sources are linearly

mixed, the observed signals are expressed as

x(t) = Y a(m)s(t —n) = A@)s() "

where 80 =[50, K .5,0] is the source signal
vector, and X(1) = [x(0). K % Of is the observed

signal vector. Also,3(") = la,(W, is the mixing fil-

ter matrix with the length of N,

A(2)= 1:2 ay(n)z™

e L is the z transform of a(n),

where z' is used as the unit delay operator, i.e.,

-n

7" x()=x(t—n). ay(n) {5 the impulse response
between the k -th microphone and the /-th sound
source, and ¥} denotes the matrix which includes

the element X in the I-th row and the J/-th
column. Hereafter, we only deal with the case of
K =L in this paper.

A conventional mixture in the time domain cor-
responds to instantaneous mixtures in -the -fre-
quency domain. Hereafter, the convolutive BSS
problem is considered in the frequency domain un-
less stated otherwise. Note that digital signal proc-
essing in the time and frequency domains are es—
sentially identical, and all discussions here in the
frequency domain are also essentially true for the
time—-domain convolutive BSS problem. Therefore,
we can apply an ordinary ICA algorithm in the fre-
quency domain to .solve BSS problem in a rever—
berant environment. Smaragdis[4] exploited the
transform of convolved mixing into simple multi-
plicative operation and proposed the application of

a short-time discrete Fourier transform (STDFT)
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for (1), and then to separate independent compo-
nents in every frequency bin.

Thus, in the frequency domain, the entire proc—
ess of convolved signal separation is transformed
into the computation of the separation matrix in
each frequency bin for each source.

Applying the model in the frequency domain in-
troduces a new problem: the frequency bins are
treated as being mutually independent. As a result,
the estimated source signal components are recov-
ered with a different order in the frequency bins.
And in FDICA, the scaling problem also become
nontrivial, i.e., the estimated source signal compo-
nents are recovered with a different gain in the dif-
ferent frequency bins.

Also it is easy to converge to the separation fil-
ter in an iterative ICA learning with a high
stability. However, the separation performance is
saturated before reaching a sufficient performance
because the independent assumption collapses in
each narrowband[8]. This is because we transform
the fullband signals into narrowband signals espe-
cially when the umber of subband is large. This
is a serious and inherent problem, and this prevent
us from applying FDICA in a real acoustic envi-
ronment with a long reverberation.

The signal model in the frequency domain is the

following form.

X(w,7) = l(@)S(w,7), (2)

where, @ is the angular frequency, and 7 repre-
sents the frame index. The separating process can

be formulated in each frequency bin as :
Y(w,7) = W(o)X(0,1), (3)

where 8(0,7)=[S(0,7), A ,S,(@,0)] is the source
signal in frequency bin ,
X(@.7)=[X,(@.7), K , X (@.0)] denotes the observed
signals.

Next, Y(@.1)=[1(@.0).K .Y, (@.0] is the esti-

mated source signal vector, and W(®) represents

the separating matrix. W(@®)is determined so that

Y (o.0)and Y,(@: ) hecome mutually independent.
For the simple notation, we will annihilate the
terms @ and T.

To calculate the separating matrix W(@), we use
an optimization algorithm based on the mini-
mization of the mutual information of mixed
signals. Different theories, such as informax ap-
proach, maximum likelihood, negentropy max-—
imization nonlinear principal component analysis
(PCA) and Bussgang cost function based algo-
rithm, for ICA lead to the same iterative learning
rule for BSS[7].

To deal with complex signals in ICA at each fre-
quency, the separating matrix was updated using the

following learning rules.

Wi+1(w):wi(w)+.u'AWi(w), (4)

where AW = g[l-d(Y)Y" W,
®(Y) = tanh[re(Y)]+ j tanh[im(Y)]

where sub i means the iteration number and @
is frequency bin. Y represents the conjugate
transpose of Y, and ’e[Y] and [Y] are the real

and imaginary parts of Y, respectively. In the

nonlinear functional P(¥;), tanh() is applied sepa-
rately in the real and imaginary parts. The matrix
I is an identity matrix. The constant # is termed
the learning rate. Fig. 1 represents the total proc-
essing of the 2x2 case FDICA algorithm with P -
point short - time FFT block.

Generally, fixed value of # is used in conven-
tional ICA algorithm. However, in general, we can
observe that the characteristics of the speech sig-
nals have a large energy in low frequency band.
Thus the convergence is irregular with each fre-
quency bin in adapting the FDICA algorithm. This
irregularity would cause the problem of the FDICA.
If adjusting this converging rate regularly, we
would expect better result. It would be the solution
to the problems of the FDICA.
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Fig. 1. Block diagram of the frequency domain ICA
algorithm.

3. PROPOSED VARIABLE STEP-SIZE
ICA

This paper proposes a variable step-size algo-
rithm at each frequency bin component for improv-
ing the separation performance based on FSICA.
The step-sizes are various to each input compo-
nent differently. In eguation (4), # is (fixed)

step-size parameter that ranged with O<pu<l

Generally, this parameter controls the speed of
convergence. Since the convergence time is in-
versely proportional to #, a large # is selected for
fast convergence in applications with non sta-
tionary input signals. This selection, however, re—
sults in Increased excess mean squared error
(MSE). And small # causes a slowness of con-
vergence to the weak input signals.

We need to normalize the step-size to the input
signals. Especially, in FDICA method, a different
input at each frequency component could have ex-
hibited irregular convergence speeds among the
different frequency bins. This irregularity could
have caused to mislead to the local minimums.

In this section, a modified version of the ICA up-
date algorithm will be proposed and we will show
the characteristic of the input speech signal in fre-
quency domain. The step-size parameter is varia—

ble to the input magnitude by normalizing the input

signals. The step-size changes at each frame as
well as at each bin. The variable step-size algo-

rithm is shown in (5).

W, (@) = W, (@) + y(0)- AW, (o) (5)

(@)= ,u/max[”X,(a))f

X, (0))”] .

il

where #i

The term #4(@) is variable step-size, this term

4,(0) is-regularized for the updating equation at
different bin.

There were various methods to normalize the
step-size. A method using the norm of the input
signals frame by frame may have large perturba-
tion in case of radical changes of inter frame fre-
quency bin. So we divide the magnitude of the in-
put signal by ten levels as shown in Fig. 2. The
Fig. 2 represents a normalized histogram of the
1024-tap frequency components of the mixing data.
We can observe that the lower frequency compo-
nent below than about 400" bin has a more domi-
nant energy than the higher one.

Then we endow the step-size with inversely
proportioned values between 0.1 and 1. This 10-
step-quantizing method copes with the perturba-
tion of separating matrix by the small changes of
input. Moreover, this technique has an effect as like
the adopting of low pass filter which help the sepa-

rating matrix for stable convergence, too.

X{w) n

Muagnitude
of X(w)

| #4206
20 0.7
#<0.8

i3
P i I
’ 2209
] i
210

¢ 250 40 500 300 1000
Frequency Bin (1-1024)

Fig. 2. Histogram of input data and step-size
normalization.
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4. COMPUTER SIMULATIONS

To examine the effectiveness of the proposed
method, we carried out computer simulations using
dry speech signals with 8-KHz sampling rate. We
assumed that two omni-directional microphones
with an interelement spacing of 4-cm. The
step-size parameter # in (4) affects the separation
performance of BSS when the convolved mixing
chanriels change. We chose # to optimize the per-
formance for each mixing channel.

To test the algorithms, we used mixing systems

as follows in z-transform domain,

4(z)= 2 1
A O ®)

The mixing system of (6) shows an instanta-
neous {(nonreverberant) mixing case.

09+05z7" +037

40 05z°+03z7 +02:°
Z)=
° -0727 -03"°-02:™" (7)

08-01z"

The mixing system of (7) is a convolutive
(reverberant) mixture, and has a minimum phase

with all its zeros inside the unit circle used in [10].
We assumed the straight component ¥+ as a

signal, and the cross-channel component Yit=n{)

as interference. We define the output signal-to-in-

terference ratio (STRo) for ¥ as

SIR,, = 10log—~——————(dB)

®)

We use SIR as an average of S/Ro and SIRy,
in order to measure the performance. This meas-

urement is consistent with the performance evalu-

Table 1. Comparison of the SIR results

ation of BSS in which the crosstalk component as—
sumed as interference. We measured SIR’s with
siX combinations of source signals using two male
and two female speakers, and averaged them.

Table 1 shows the mean SIR values. It is ob-
vious that SIR improvements for instantaneous
mixing cases are almost the same for both fixed
step-size algorithm and variable step-size al-
gorithm. However, for reverberant condition, pro—-
posed method gives good result in the performance
about 4-6 dB. Furthermore, this table shows a
maximum SIR and minimum SIR. In the comparing
of minimum SIR’s, ours outperformed to conven-
tional ICA about 5 dB above.

And second measure is a performance matrix.
After the data pass the estimate unmixing FIR ma-
trix was multiplied with the corresponding mixing
matrix to obtain a performance matrix. This matrix
is an indication of how well the inputs were sepa-
rated, and has to be close to the unit FIR matrix
(a matrix where the diagonal elements are delta
function and the rest is zero) to denote success.

The performance matrix is shown in (9).
M=WA=~I| (9

Now, we compare the separation qualities by Fig
3.and Fig. 4. These two figures show the perform-
ance matrix. The best result will show identity
polynomial matrix shape, i.e., the diagonal com-
ponents (M, M) are supposed to peak at mid-tap
and the off diagonal components (M, M)
should be plat with zero level, respectively.

The Fig. 3 represents the result of the conven—
tional ICA and proposed algorithm result is in Fig.
4. In this Fig. 4, the mixture was separated with
more conservative adaptation parameter selection
and by using the influence factor described in the
previous. Resulting separation of Fig. 4 was almost

Algorithm Inst. case Conv. case Max. SIR Min. SIR
FDICA(dB) 25 15 32 12
Proposed FDICA(dB) 25 21 32 17
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Fig. 3. Performance matrix for FDICA.
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Fig. 4. Performance matrix for proposed |CA.

inaudible in this case.

As shown in Fig. 2, it is clear that separation
will be better especially in low frequency range be-
low 2 KHz. Speech signals do not have significant
high frequency content so training of the high fre-
quency network is usually bad. This is evident in
the plots where the interfering signals are seen as
highpass filters, while the cleaned signals are more
impulse-like.

This can be seen better in Fig. 5 which are the
frequency domain representations of the perform-

ance matrix using proposed method, ie., M( ).

24 straight fine: M,, (/)
dot line: M, ()

Amplitude (dB8)

oy s vy 7
W 1’
Frequency(tz)

Fig. 5. Frequency domain representation of the
performance matrix.

The dashed lines are interfering signal (Ma(/))

and the solid Jines are the desired signal (M) (/).
We can note the seemingly poor performance at
the high frequency regions as discussed in [4].
This is however not a problem given that there is
no excitation at these levels. Excluding permuting
problems for the frequency range of the inputs (10
Hz-800 Hz) the algorithm works fine.

5. CONCLUSIONS

Our work is aimed at developing the BSS algo-
rithm based on FDICA to the convolved mixing
case. This paper proposes a variable step-size al-
gorithm at each frequency bin component for im-
proving the separation performance based on
FSICA. The different magnitude of each frequency
component causes a bad result for successful
convergence. The regular weights are updated by
normalizing the step-size with the magnitude of
input signal at each frequency bin. The perform-
ance of this method has been verified by subjective

listening tests and by quantitative measurements.
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