JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2005(pp. 798-806)

A History Retransmission Algorithm for
Online Arcade Video Games

Seong-Hoo Kim*, Kyoo-Seok Park™

ABSTRACT

In this paper, we suggest a game system that can support network modules for multi-platform based
video games, and built a system that can convert from a single-user game to multi-user game. In this
system, we bring in an initial delay buffering scheme on clients to handle any periods of latency occurring
from the load fluctuation in a network, when a real-time game is played, and shows that stable play
for a game is achieved as the result of the scheme. This paper also presents a retransmission algorithm

based on the history of game commands to handle drawbacks of UDP mechanism. And, we evaluate
the network delay and packet loss using the simulation tool NS2, and shows the case of 0.3 second buffer

delay is the most suitable for recovery.

Keywords: Network Game, Arcade Video Game, Synchronization, Mutiplayer, Real-time Game, Latency,

History Packet

1. INTRODUCTION

The Current video games and arcade games are
for the most part played on various emulators
supported by personal computers as a single-user
mode. Gaming industries try to provide online
mode playing of single-user mode games, but only
limited number of games are served in the form
of online mode[1,2].

For complete network games, have to be trans-
mitted accurate game data and must be synchron-
ized games, then it can view synchronizing and can
play games. Current game synchronization mecha-
nism includes the Al compensation(Dead Recko~
ning) algorithm based on packet delay and loss and
a speedup method through packet skip. Which

¥ Corresponding Author ! Seong-Hoo Kim, Address:
(631-701) 449 Wolyong-Dong, Masan, Kyungnam, Korea.
TEL : +82-55-249-2650, E-mail : arrayiv@csc.ac.kr
Receipt date : Feb. 25, 2005, Approval date © June. 29, 2005
+Adjunct Professor, Dept. of Computer Engineering,
Kyungnam University, Masan, Korea.
" Professor, Dept. of Computer Engineering, Kyungnam
University, Masan, Korea.
(E-mail : kspark@Kkyungnam.ac.kr)
% This research has been funded by the Kyungnam
University, Masan, Korea.

scheme is actually applied to a game is wholly de-
cided by the characteristics of the gamel4,7,10,13].

In order to secure stable game play, some meth-
ods to buffer game commands, as well as retrans-—
mission algorithm against erroneous packets, are
required. Furthermore, any scheme complementing
packet loss and error for UDP communication
should also be adopted because most of network
games are played on preferred UDP communica-
tion to support multiple players(4,6,11].

This paper introduces an initial delay buffering
scheme for clients to handle any latency time oc-
curring from the load fluctuation in a network
when real-time game is played, and suggests a
history of game commands based retransmission
algorithm to handle drawbacks of UDP mechanism,
such as packet losses and errors.

The focus of suggest system is not the issue
of retransmission existing packet units but rather
focuses on the packets game command data which
are found in each packet. Lost game command da-
ta can be transmitted, but in the most recent game
data, included in the transmissions. It does not in-

volve any increase in costs to the packet.

A History Retransmission Algorithm for Online Arcade Video Games 799

2. CONCEPT OF GAME PLAYOUT IN
THE SUGGESTED SYSTEM

Fig. 1 shows a concept of how a network game
is played. Network games are synchronized by
2-byte status registers of which contents are de-
cided by keyboards or joysticks and delivered to
an input port of the other player.

The main objects and assumptions of the sug-
gested system are as follows.

- Video games generally require better perform-
ance than common PC games, and should support
and implement 60 frames per second in case of a
3D game.

~ Almost current video games, such as PS2,
X-Box, etc., support a multi-play mode for simul-
taneous 2 or 4 players, and can easily support plays
on a network when a game engine is accessible
through 1/O synchronization if game modules and
APIs are applied to.

— When a certain solution is applied to PS2 or
X-Box level, or the solution plays a role of a li-
brary, up to several thousands of video arcade
games can be played on a network through simple
/O controls even though source codes are not
modified.

- Video arcade games should provide the same
views between remote 2 players. It means that co-
ordinates of 3D object movement which is used in
common PC network game engines need not be re-
motely shared. When this notion is actually applied,
a lot of synchronization packets can be reduced and
the potential following the decrease in the packets
are expected once input signals of remote joysticks
from 2 remote systems are controlled in the way
that those signals are input from a local system
and I/O is synchronized based on this kind of signal
input.

- The UDP protocol is used to raise speed. A
retransmission algorithm should handle any packet
loss.

= Views can be synchronized when input signals

from remote players’ joysticks are transmitted.
And time stamp mechanism and mutual synchro-
nization numbers are used to secure stable and
consistent synchronization as well as properly
handle latency time in a network. Operational vari—
ables in a network, such as jitter and delay, can
be controlled by buffer management schemes in
order to achieve stable game play.

- Dynamic buffering values are set to improve
speed. When any packet does not arrive at the pre-
defined time for network failures, some methods
should be used to prevent slow .display picture, or

sometimes stop of picture.

Internet

Fig.1. Concept of P2P network game playout.

3. SUGGESTED SYSTEM

‘This paper represents how to add network mod-
ules to non-network game engines and support re-
al-time network game to be played seamlessly.
Data of asynchronogs commands‘ should be proc-
essed synchronously to allow network games to be
played. And, data of commands among network
players should be executable independent of char-
acteristics of a network. Furthermore, network
games should be played even in a worst case due
to network loads.

Consequently, the suggested system in this pa-
per is implemented in the way that it can support
stable playout of a real-time network game which
consists of modules for handling I/O mapping of

game engines, packet loss and buffer management.

3.1 1/0 Mapping Processing of a Game Engine

Fig. 2 shows a game emulator having input

800 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2005

Virtual game machine

Video game emulator

Fig. 2. Processing diagram of commands from
plavers in input buffers.

command data and transmitted input data stored
in a buffer with an interval of Time Stamp. The
contents in a buffer, which are status values of
keyboards and joypad;, are sequentially stored
with Sync numbers. If fnput from keyboards or
joypads are not applied, commands are presumed
not to happen. But, sequential command data is re-
quired to keep synchronization going on. The val-
ues in the buffer are status values of hardware
buttons of a game emulator, and used to make any
required operations.

In Fig. 2, 30 frames to 60 frames per second are
displayed when game is played. If an interrupt is
hooked with another interrupt when display pic-
tures are scanned, frame playback is stopped and
command data from each player stored in a buffer
1s mapped with assigned joypads. Once an inter—
rupt is returned, command data stored in a buffer
is applied to status values of hardware buttons by
the game emulator and the game is resumed to go

on.

3.2 Buffer Management

Each game client suggested in this paper con-
trols its own buffer, which is provided to secure
stable game play. If network jitter or packet loss
or error under UDP communication occurs, a game
can produce a fatal result. In order to prevent this

kind of problem, a checking process should be per—

formed to find out whether or not any packet loss
occurs in a transmitted stream. Once any packet
loss is detected, buffers are rearranged by the lost
packet through a request for history retrans-
mission against the lost packet. If a jitter is oc—
curred, then it can adjust the buffer size to level-2
maximum for adapt the load alteration. If the com-
mand data received from a network exceeds the
number of data processed and played in a game
engine, there is a possibility of an overrun.

When the condition expressed in the Equation
(1) and (2) occurs for a certain unit time tempora-
rily, the increased or decreased volume in the re—
maining command data can be processed within
the capacity of a buffer at game client side. But,
the condition lasts for a long time out of the ca-
pacity of a buffer, any overrun or starvation is ex-
pected to occur.

annput Command 1) Znszyout Command | (1)

If the number of command data received from
a network is less than that of the data processed
and played in a4 game engine, there is a possibility

of starvation.

}ilnput Command i < En]P/ayout Command i (2)

In Fig. 3, the backward threshold is a warning
section for starvation so that before actual starva-
tion each player can be notified in this time period.
The forward threshold is a time period in which
each player can be notified of an overrun. Players
receiving these notification signals stop tempora-
rily and resume after buffering delay time.

Joystick
Joypad

I' Send

History

Forward threshold
Buffer in pointer

Backward threshold

PlayOut pointer }*’

receive

Fig. 3. Asynchronous view.

A History Retransmission Algorithm for Online Arcade Video Games 801

Buffers are provided as many as the number of
game clients playing the game. History buffers
store input signals from keyboards and joysticks,
which are used when a request for retransmission
is received.

For the buffer, an initial value is set to Ts. After
the Ts time input from user’s key is processed as
if it is a data stream, and proper values for time
stamp is calculated. And, a certain time is add to
the transmission time that has slower packet
transmission time than the other player, then addi-
tional initial buffer value is calculated according to
defined formulas.

Until 0.1 sec. to 0.3 sec., even though input from
user’s key is not reflected just in time on a display
screen, there 1s no problem for a game to proceed.
Actually, players can not experience any latency
during this period. A buffer gathers command data
during the initial delay of 0.3 sec, and after a delay
of an input to output connection for 0.3 sec, the
game Keeps going on. 715§

The value of time stamp is decided as follows.

(RTTmax - Maximum of Round Trip Time,
RTTmin:
FPS @ Frame Per Second)

Ts= Max((RTT .. [2— RTT ., /2), 1/ FPS)(3)

Minimum of Round Trip Time,

3.3 Determination of Buffer Size

The buffer size for the system suggested in this
paper is set aiming at supporting stable game play
as well as optimal synchronization after a game is
started. The size can vary according to the number
of players and circumstances of network.

The buffer size is first decided at the beginning
of a game by the frame rates of each player, round-
trip time and jitter allowance. Afterward, the size
is re-calculated once any starvation or overrun oc-

curs or any player leaves the game during play.

The imtial buffer size is decided as follows.

(B 4 1, buffer initial delay)

AB,=Bg, 4 + RTT ., *TS @

size

When synchronization is set up again for the
ahove reasons, the buffer size is calculated by the
following equation.

RTT .. /2

_ Bde lay
AB o= RTT . J?

size RTT max)/2 —

3.4 Threshold Section of a Buffer Value

The buffer for game clients has forward and
backward threshold section. The backward thresh-
old notifies each player of an expected abnormal
condition before command data stored in a buffer
is used in all, and requests a pfocessing delay in
order to make the buffer filled with data again.

(A, maximum latency of arrival commdnd

A7 . maximum jitter of arrival command)

For the above role, thresholds should have time
allowance to delay some buffer processing or syn-
chronize buffers again before all resources are

consumed.

Backward threshold
B]

Fig. 4. Threshold section.

Forward threshold

3.5 Retransmission Algorithm

" Fig. 5 shows conceptual flow of the retrans-
mission algorithm.

For a transmitted packet, the current sequence
number is compared with the previous number.
When the result of the comparison shows that the
packet is not sequential, the retransmission algo-
rithm is activated following a request for retrans-
mission and according to the extent of time stamp.
If time stamp is included in the time period in
which user’s key is pressed down and a packet
does not arrive at a destination, the previous com-
mand data is compared with the next command

802 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2005

data. When the result of the comparison shows
discrepancy between them, retransmission is
requested. Otherwise, the data is duplicated for
further use.

7 N Pgp—
¢ % Verify
{ Request g
L ’ command
- 1 1 ¢
¥ retransmnmot}. ¢ dats |
. /
;- there 7 Tt [
[synchronizedy Tl S
H Data ;
“(Check buffery
5 /_,--"'4 - N o '\\
[\' Outout - s / Relocate™,
Pl W Synchronized : ! History 1

data L data

I
s

Fig. 5. Retransmission algorithm.

3.6 1/O Based History Retransmission

Fig. 6 represents conceptual flow of an /O based
history retransmission algorithm. The transmitted
packet is filtered out first, and the syrichronization
sequence number and command data 1s separated
before a request for retransmission. The request
for packet retransmission is decided on the basis
of time stamp. Once the request is generated, a
sender transmits a requesting message for re—
transmission and its game data integrated alto-
gether into control signals. Upon receipt of the re-
questing packet, a receiver send out the requested
game data included into the data which is originally
intended to be transmitted.

Fig. 7 shows how the receiving process of the
history retransmission algorithm is performed.
When a packet is arrived, the message type is clas-
sified by packet filtering. In case of the analyzed
packet is retransmitted one by retransmission al-
gorithm, the whole content of the packet is stored
into a buffer. When the classified packet is normal
one, current synchronization number and the next
number are marked by way of precaution against
packet loss or error using the Estimate sync Table.
If the-currently identified synchronization number
differs form an expected number, R’ is marked in
the Retransmit Table, which means that a request

for retransmission is going to be included in the
normal data subject to being transmitted. The
History Transmit Table keeps the history of syn-—
chronization number to which senders requested

until now.

21 Data in time stamp
ssion
300ms .
retransmission 350ms” m
| s]m]

Fig. 6. I/O based history retransmission flow.

Packet || AmveTime Arival Packet
Filtering Check
Estimate
Syne
Table
Control Add Next Sync
Type Det Y= aggpufer T PO

P1 H
N
History Meark Retransmit History Retransmit
Data Add Buffer Transmit Table Table

o2
p1

Add Next Sync i P
Syme Y Add
Buffer_History

Fig. 7. Receiving process of the history retrans-
mission algorithm.

Fig. 8 shows how the sending process of the
history retransmission algorithm is performed. The
process operates with an interval of Time Stamp.
The data type of the packet to be sent out is de—
cided by the Retransmit Table and History
Transmit Table. In addition, the size of the history
data is set referring to the History Transmit Table.
In case unidentified or un-received synchronization
data number is detected according to the contents
of the Retransmit Table, a requesting message for

retransmission is included into a packet.

A History Retransmission Algorithm for Online Arcade Video Games 803

Timer{ TirneStanp)
Detenmine Detamine
Player N7 Y Packet Type History type
Retransimit
Table Tlarsm Table Latency table

Pl
N

Fig. 8. Sending process of the history retrans-
mission algorithm.

4. ANALYSIS OF THE EFFICIENCY
OF THE SUGGESTED ALGORITHM

The environment of simulation is shown in Fig.
9(a,b). With NS2 simulation, the efficiency of the

(a) Components of Game Application for each node

Application

<<refines>>

i Buffer

GameApp
[-m_nPlayerCount - int
|-m_Playerim_nPlayerCourt]
l-m_recvBufterim_nPlayerCount] : Buffer
l-m_history : Buffer
lm_syne . int
l-m_interval_: int
|-m_running_ : int
lm_sndf_timer_: SendTimar
|-m_playout_timer_: PlayoutTimer
m_estimateSynclm_nPlayerCourt] :int
l-m_requireRetransfar{m_nPlayerCount] : char
i *latericy|m_nPlayerCount] : double
1_nPlayerCount] :int

TimerHandler

<erefines>>

oGameAppO
oommand(n argc : ik, in argy) :int
start) : void

15::()'»/0“ o SendTime PlayoutTimer
+send_game_pkt0) : void -

L+ send_game_pkt(in player int, in syncaum : ing) : w1 : GameAPD
+send_ack_pkt() vo P
|+send_ask. mmnster(in syncNum : int) : void [*expire(in Event*) : void |+expire(in Event") : void
[erecy_msg) : vo

Liritg) - void

|-next_snd_time() : double

Lrecv_msgin nbytes : int, in “msg : char) : void

1 GameApp

(b) Object component of Game Application.

Fig. 9 The environment of simulation.

suggested algorithm is analyzed. Fig. 10 shows a
buffer status having contents with error ratios of
1% and 5%, respectively. The buffer contents are
filled during an initial delay of 0.3 sec. and then
they are consumed along with playout. From the
simulation result, it can be inferred that history
based retransmission algorithm can keep a buffer
stable even though packet errors occur.

Fig. 11 shows the change of requested retrans-
mussion packet size with error ratios of 1% and 5%,
respectively. From the simulation result, it can be
inferred that the request increases several bytes
only in data volume.

Fig. 12 shows the number of requested retrans-—
mission with error ratios of 1% and 5%,
respectively. '

Fig. 13 shows the number of requested packets
between the suggested algorithm and other re-
transmission request with error ratios of 1% and
5%, respectively. Under the suggested algorithm,
packets are generated in a uniform manner. On the

other hand, in the case of general retransmission,

A5 e S0 398 il ragres

fria) 2B, 10) 150 oaven 2

Fig. 10. Buffer contents with error ratios of 1%
and 5%, respectively.

804 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6, JUNE 2005

1

RS ORI

sy 2oy Lo 2o 2ok et)

Fig. 11 Retransmission packet size.

Fig. 12 Number of requested retransmission.

it shows increase in packet numbers.

Fig. 14 shows the number of requested total
packets between the suggested algorithm and oth-
er retransmission request with error ratios of 5%
and 10%, respectively.

Fig. 15 shows to analyze the process of resynch-
ronization with setting up 0.2 sec. in initial delay
and with packet error ratios of 0.8%. In case of
short time of intial delay, it can be recognized hap-
pening to resynchronization even if the error ratio
is low.

Fig. 16 shows the process of resynchronization

for simulation analysis make change one node from

X Graph

gty

LIS ER IS RS IR R R R A S SIS EE SIR R R DI SEFRETITIN

o _wee alam cwer s saew xow mowe syen voes | wowe s acion

Fig. 13 Number of requested packets.

o saneee o B0 st sz s

Fig. 14 Number of requested total packets.

30ms to 200ms of delay and the other node from
100ms to 200ms of delay with packet error ratios

A History Retransmission Algorithm for Online Arcade Video Games 805

.
|
0].

e 200 AT 5400 3501 s Lo

Fig. 15. Process of resyncronization | .
(initial delay=0.2sec, packet error ratio=0.8%)

Lo Lt A, 80 some L0 120me

Fig. 16. Process of resyncronization Il
(increase delay=200ms)

of 0.8%.

We tried to analyze the process of resynchroni-
zation in Fig.15 and Fig.16. Although network traf-
fic can happen, it was tested the whole time of re—
synchronization, and the buffer can be changed
with downsizing of buffer.

Here, we can see the case of 0.3 sec. buffer delay
is the most suitable for recovery. And even if the
packet losses are occurred continuously, retrans—

mission packet will be increased resynchronization.

5. CONCLUSION

The suggested algorithm in this paper uses syn-—
chronization numbers for frames to check and find
out any packet loss, and bring in the Time-stamp
mechanism, to detect consecutive packet losses.
With this algorithm, along with game play, packets
of game commands are transmitted with an inter-
val of the time stamp determined by taking latency

time into account to keep the same and synchron-

ized game views. A history of game commands
based retransmission algorithm to handle lost
packets is designed and implemented as an appli-
cation protocol. Under the algorithm, control codes
required for game play and data of game com-—
mands are altogether sent and received with a re-
quest for retransmission. It means that a lost pack-
et is retransmitted, if requested against packet loss,
with requested game command data so that over—
head to retransmit game commands can be
eliminated.

If the proportion of packet error is 1%675% with
0.3sec in a buffer initial delay, it does play with
stable situation. In other case, if the proportion of
packet error is over 5%, the only game data are
added on it. It means that even if the packet losses
are occurred continuously, retransmission packet
will not be increased to resynchronization.

Authors have a plan to evaluate the suggested
algorithm in a mobile environment, and develop an
algorithm which can relay the retransmission to
each client from a pivot client showing better net—

work performance as a further research.

6. REFERENCES

{11 Wu-chang Feng and Wu-chi Feng, “On the
Geographic Distribution of On-line Game
Servers and Players,” NetGames, pp. 173-179,
May, 2003.

[2] Francis Chang, Wu-chang Feng, and Wu-chi
Feng, “Provisioning On-line Games: A Traffic
Analysis of a Busy Counter-Strike Server,”
IMWZ2002, pp. 151-156, Nov, 2002.

[3] Yutaka Ishibashi and Shuji Tasaka, “Causality
and Media Synchronization Control For Net-
work Multimedia Games,” NetGames, pp. 42-
51, 2003.

[4] E. Cronin, B. Filstrup, AR. Kurc, and
S.Jamin “An Efficient Synchronization Mech-
anism for Mirrored Game Architecture,”
NetGames, pp. 67-73, May, 2002.

[5]1 G. Armitage, “Sensitivity of Quake3 players

806 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 8, NO. 6. JUNE 2005

to network latency,” ACM SIGCOMM Internet
Measurement Workshop 2001, Berkeley, CA,
USA, Nov. 2001.

[6] Matthew K. H. Leung, and John C. S. Lui,
“Adaptive Proportional Delay Differentiated
Services: Characterization and Performance
Evaluation,” IEEE/ACM TRANSACTIONS
ON NETWORKING, VOL. 9, NO. 6,
DECEMBER 2001, pp. 801-817.

[7] Yang, J. and Lee, D., “Scalable Prediction
Based Concurrency Control for Distributed
Virtual Environments,” Proc. IEEE Virtual
Reality 2000, New Brunswick, March, 2000.

[8] N. Baughman and B. Levine., “Cheat-proof
playout for centralized and distributed online
games,” In Proc. Infocom 2001, April 2001.

[9] J. Farber, “Network Game Traffic Modelling,”
Proceedings of NetGames 2002, pp. 74-78,
Braunschweig (BRD), 16-17 April 2002.

[10] Diot, C. and Gautier, L., “A Distributed
Architecture for Multiplayer Applications on
the Internet,” IEEE Networks Magazine, Vol.
13, N. 4, July-August, 1999.

[11] L.Gautier and C.Diot, “End-to-end Transmis-
sion Control Machanisms for Multipartyr
Interactive Application on the Internet,” IEEE
INFOCOM 99, pp. 1470-1479. March 1999.

[12] Katherine Guo and Sarit Mukherjee, “A Fair

Message Exchanges Framework for Distrib-

uted Multi-Player Games,” NetGames 2003
pp. 29-41, May, 1998.

[13] Cai, W., Lee, and Francis B.S., “Auto—-Adaptive
Dead Reckoning Algorithm for Distributed
Interactive Simulation,” Proceedings of Thir-
teen Workshop on Parallel and Distributed
Simulation, pp. 82-89, 1999.

Seong-Hoo Kim

He received his M.S and Ph.D
degrees from the department of
Computer science, Kyungnam
University, Korea in 1997 and
2005. He was a associate
professor in school of Computer
science at Chang-Shin College
from 1998 and 2004. At present, he works for
YeSoft/Director and he was a Adjunct Professor at
Kyungnam University. his research field has been
Network Game and Mobile & Ubiquitous Multimedia.

Kyoo-Seok Park

He is a professor of Computer
engineering at Kyungnam Uni-
versity, Korea. He is the honor-
ary president of Korea Multi-
media society now. His research
focuses on Distributed system,
specifically applied to internet
computing, Security system and Multimedia system.
M.S and Ph.D in Computer science from the Chung-
Ang University, Korea.

