Multi-scale simulation of drying process fey porous materials using molecular dynamics (part 3: multi-scale simulation)

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(3부: 멀티스케일 시뮬레이션)

  • Baik S.M. (Department of Percision Mechanical Engineering, Graduate School, Hanyang University) ;
  • Keum Y.T. (Division of Mechanical Engineering, Hanyang University)
  • 백성민 (한양대학교 일반대학원 정밀기계공학과) ;
  • 금영탁 (한양대학교 기계공학부)
  • Published : 2005.08.01

Abstract

In this study, the numerical simulation of drying processes for porous materials is performed by employing the hierarchical multi-scale modeling and the nano-scale material properties obtained from the molecular dynamics simulation. The multi-scale simulation system is set up using pre- and post-processors and the drying process of electric porous ceramic insulator is simulated. The temperature, moisture, residual stress, and displacement distributions are compared with those based on homogenized properties.

건조공정 중인 다공성 물질의 물성은 재료의 비균질성 즉 전위, 입자, 입계, 균열, 기공과 같은 미시적인 결함 인자들의 영향을 받는다. 따라서 다공성 물질의 건조공정을 전산 시뮬레이션하기 위해서는 연속체 스케일과 원자 스케일해석 그리고 스케일별 해석 한계 극복이 요구된다. 본 연구에서는 분자동역학 시뮬레이션으로 계산한 나노스케일 물성를 연속체 스케일 해석에 연계하는 계층적 멀티스케일 시스템을 구축하고, 다공성 세라믹 애자의 건조공정을 전산 시뮬레이션 하였다. 해석 결과, 온도, 습도, 변형률 그리고 응력 분포를 기존의 결과들과 비교하여 검증하였다.

Keywords

References

  1. 'National nanotechnology initiative, the initiative and its implementation plan' (National Science and Technology Council, Subcommittee on Nano science, Engineering and Technology, U.S.A., 2000)
  2. F.F. Abraham et al., 'Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture', Europhysics letters 44[6] (1998) 783 https://doi.org/10.1209/epl/i1998-00536-9
  3. S. Kohlohff, P. Gumbsch and H.F. Fischmeister, 'Crack propagation in BCC crystals studied with a combined finite-element method and atomistic model', Philosophical Magazine: A 64 (1991) 851
  4. M. Ortiz, A.M. Cuitino, J. Knap and M. Koslowski, 'Mixed atomistic-continuum models of material behavior: the art of transcending atomistics and informing continua', MRS Bulletin 26[3] (2001) 216
  5. Y. Ichikawa, K. Kawamura, M. Nakano, K. Kitayama and H. Kawamura, 'Unified molecular dynamics and homogenization analysis for bentonite behavior: current results and future possibilities', Engineering Geology 54 (1999) 21 https://doi.org/10.1016/S0013-7952(99)00058-7
  6. Y. Ichikawa, K. Kawamura, N. Fujii and Theramast Nattavut, 'Molecular dynamics and multiscale homogenization analysis of seepage/diffusion problem in bentonite clay', International Journal for Numerical Methods in Engineering 54 (2002) 1717 https://doi.org/10.1002/nme.488
  7. Y. Ichikawa, K. Kawamura, N. Theramast and K. Kitayama, 'Secondary and tertial consolidation of bentonite clay: consolidation test, molecular dynamics simulation and multi scale homohenization analysis', Mechanics of Materials (2003)
  8. 'Multi-scale finite element analysis of porous materials and components by asymptotic homogenization theory and enhanced mesh superposition method', Modeling Simulation Material Science Engineering 11 (2003) 137
  9. 'Role of atomic charge transfer on sintering of $TiO_2$ nanoparticles: Variable-charge molecular dynamics', Journal of Applied Physics 88[10] (2000) 6011
  10. S.M. Baik and Y.T. Keum, 'Multi-scale simulation of drying process for porous materials using molecular dynamics (part 2: material properties)', Journal of the Korean Crystal Growth and Crystal Technology (2005) Submitted
  11. J.W. Oh, S.M. Baik and Y.T. Keum, 'Multi-scale simulation of drying process for porous materials using molecular dynamics (part I: homogenization method)', Journal of the Korean Crystal Growth and Crystal Technology 14[3] (2004) 115
  12. Y.T. Keum, J.H. Jeong and K.H. Auh, 'Finite-element simulation of ceramic drying processes', Modeling Simulation Material Science Engineering 8[4] (2000) 542