DOI QR코드

DOI QR Code

Thermal Durability of Al2TiO5-Mullite Composites and Its Correlation with Microstructure

  • Kim, Hyung-Chul (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Material Science and Engineering, Hanseo University) ;
  • Lee, Dong-Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Material Science and Engineering, Hanseo University) ;
  • Kweon, Oh-Seong (Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Ik-Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Material Science and Engineering, Hanseo University)
  • Published : 2005.08.01

Abstract

Thermal shock resistance of structural ceramics is a property that is difficult to quantity, and as such is usually expressed in terms of a number of empirical resistance parameters. These are dependant on the conditions imposed, but one method that can be used is the examination of density, Young's modulus and thermal expansion retention after quenching. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between $1000^{\circ}C$ and $1300^{\circ}C$. In this study, an excellent thermal shock-resistant material based on $Al_2TiO_5-mullite$ composites of various compositions was fabricated by sintering reaction from the individual oxides and adjusting the composition of $Al_2O_3TiO_2/SiO_2$ ratios. The characterization of the damage induced by thermal shock was done by measuring the evolution of the Young's modulus using ultrasonic analysis, density and thermal expansion coefficients.

Keywords

References

  1. B. Morosin and R. W. Lynch, 'Structure Studies on $Al_{2}TiO_{5}$ at Room Temperature and at $600^{\circ}C$,' Acta Cryst., B28 1040-46 (1972)
  2. V. Buscaglia, G. Battilana, M. Leoni, and P. Nanni, 'Decomposition of $Al_{2}TiO_{5}$-$MgTi_{2}O_{5}$ Solid Solution: A Thermodynamic Approach,' J. Mater. Sci., 31 5009-16 (1996) https://doi.org/10.1007/BF00355899
  3. Y. Ohya and Z. Nakagawa, 'Grain Boundary Microcracking due to Thermal Expansion Anisotropy in Aluminium Titanate Ceramics,' J. Am. Ceram. Soc., 70 [8] C184-86 (1987)
  4. I. J. Kim, F. Zhao. J. Gong, K. S. Lee, I. S. Han, and W. S. Kuk, 'Thermal Durability of Aluminum Titanate-Mullite Composites with High Thermal Shock Resistance,' J. Ceram. Pro. and Res., 4 [2] 71-9 (2003)
  5. I. J. Kim and G. Cao, 'Low Thermal Expansion Behavior and Thermal Durability of $ZrTiO_{4}$-$Al_{2}TiO_{5}$-$Fe_{2}O_{3}$Ceramics between 750 and $1400^{\circ}C$,' J. Eur. Ceram. Soc., 22 2627-32 (2002) https://doi.org/10.1016/S0955-2219(02)00126-7
  6. E. Gugel, 'Keramische Konstruktionswerkstoffe fuer den Motorenbau,' Keramische Zeitschrift, 36 [9] 477-79 (1984)
  7. V. Buscaglia and P. Nanni, 'Decomposities of $Al_{2}TiO_{5}$ and $Al_{2(1-x)}Mg_{x}Ti_{(1+x)}O_{5}$ Ceramics,' J. Am. Ceram. Soc., 81 [10] 2645-53 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02672.x
  8. M. Kajiwara, ' Sintering and Properties of Stabilized Aluminium Titanate,' Br. Ceram. Trans. J., 86 77-80 (1987)
  9. C. Han and D. Selb, 'Verbesserung von Aluminiumtitanat-Keramik,' Sprechsaal, 118 [12] 1157-66 (1985)
  10. B. Freudenberg and A. Mocellin, 'Aluminium Titanate Formation by Solid-State Reaction of Fine $Al_{2}O_{3}$ and $TiO_{2}$ Powders,' J. Am. Ceram. Soc., 70 [1] 33-8 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04849.x
  11. J. K. Kuszyk and R. G. Bradt, 'Influence of Grain Size on Effects of Thermal Expansion Anisotropy in $MgTi_{2}O_{5}$,' J. Am. Ceram. Soc., 56 [8] 420-23 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12714.x
  12. DIN 51068, Teil 1 : Bestimmung des Widerstandes gegen Temperaturwechsel-Wasserscheck-verfahren feurfeste Steine (1980)
  13. I. J. Kim and H. S. Kwak, 'Thermal Shock Resistance and Thermal Expansion Behaviour with Compostion and Microstructure of $Al_{2}TiO_{5}$ Ceramics,' Canadian Metallugical Quarterly, 39 [4] 387-95 (2000) https://doi.org/10.1179/cmq.2000.39.4.387
  14. I. J. Kim, 'Anwendung des Sol-Gel-Verfahrens auf die Herstellung keramischer Werkstoffe aus Aluminiumtitanat-Mullit,' Dissertation, Institut fuer Gesteinshuettenkunde, RWTH Aachen, Germany (1991)
  15. W. R. Buessem, N. R. Thielke, and R. V. Sarakauskas, 'Thermal Expansion Hysteresis of Aluminiumn Titanate,' Ceram. Age, 60 38-40 (1952)