DOI QR코드

DOI QR Code

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics

치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동

  • Kim, Sang-Kyum (School of Mechanical and Automotive Engineering, Kookmin University) ;
  • Kim, Tae-Woo (School of Mechanical and Automotive Engineering, Kookmin University) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Kee-Sung (School of Mechanical and Automotive Engineering, Kookmin University)
  • 김상겸 (국민대학교 기계자동차공학부) ;
  • 김태우 (국민대학교 기계자동차공학부) ;
  • 김도경 (한국과학기술원 신소재공학과) ;
  • 이기성 (국민대학교 기계자동차공학부)
  • Published : 2005.08.01

Abstract

The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Keywords

References

  1. J. M. Bae and Y. S. Yoo, 'Technical Trend of Fuel Cell System,' Ceramist, 6 [4] 19-31 (2003)
  2. K. S. Lee, D. W. Seo, J. H. Yu, and S. K. Woo, 'A Study on the Improvement of Strength in NiO-YSZ Porous Anode Material for Solid Oxide Fuel Cell(in Korean),' J. Kor. Ceram. Soc., 40 [3] 241-48 (2003) https://doi.org/10.4191/KCERS.2003.40.3.241
  3. H. H. Jung, D. J. Kim, J. S. Han, and D. Y. Lee, 'Mechanical Properties of (Y,Nb)-TZP/Alumina Composites for Dental Implant Abutments(in Korean),' J. Kor. Ceram. Soc., 41 [7] 508-12 (2004) https://doi.org/10.4191/KCERS.2004.41.7.508
  4. W. Beele, G Marinjinissen, and A. van Lieshout, 'The Evolution of Thermal Barrier Coatings-Status and Upcoming Solutions for Today's Key Issues,' Surf. Coat. Tech., 120-121 61-7 (1999) https://doi.org/10.1016/S0257-8972(99)00342-4
  5. M. Asmani, C. Kermel, A. Leriche, and M. Ourak, 'Influence of Porosity on Young's Modulus and Poisson's Ratio in Alumina Ceramics,' J. Eur. Ceram. Soc., 21 1081-86 (2001) https://doi.org/10.1016/S0955-2219(00)00314-9
  6. M. Jeandin, S. Rupp, J. Massol, and Y. Biennenu, 'Structural Study and Image Analysis of Rapidly Cooled Supersolidus-Sintered Astroloy,' Mater. Sci. and Eng., 77 139-47 (1986) https://doi.org/10.1016/0025-5416(86)90362-9
  7. Y. S. Han and J. K. Park, 'Preparation of Porous Silica Support and $TiO_{2}$ Coating by Sol-Gel Method(in Korean),' J. Kor, Ceram. Soc., 41 [7] 548-54 (2004) https://doi.org/10.4191/KCERS.2004.41.7.548
  8. F. B. Abudaia, J. T. Evans, and B. A. Shaw, 'Spherical Indentation Fatigue Cracking,' Mater. Sci. and Eng., A391 181-87 (2005)
  9. K. S. Lee, S. K. Lee, and D. K. Kim, 'A Study on the Coating Fracture in Silicon Nitride Bilayer : I. Effect of Elastic/Plastic Mismatch(in Korean),' J. Kor. Ceram. Soc., 34 [12] 1268-74 (1997)
  10. K. S. Lee, S. K. Lee, and D. K. Kim, 'A Study on the Coating Fracture in Silicon Nitride Bilayer : II. Effect of Coating Thickness(in Korean),' J. Kor. Ceram. Soc., 35 [1] 48-54 (1997)
  11. B. R. Lawn, 'Indentation of Ceramic with Spheres: A Century After Hertz,' J. Am. Ceram. Soc., 81 [8] 1977-94 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  12. P. Miranda, A. Pajares, F. Guiberteau, F. L. Cumbrera, and B. R. Lawn, 'Role of Flaw Statistics in Contact Fracture of Brittle Coatings,' Acta. Mater., 49 3719-26 (2001) https://doi.org/10.1016/S1359-6454(01)00280-4
  13. J. H. Ha, J. H. Kim, and D. K. Kim, 'Elasticity and Thermal Conductivity of Porous Ceramics with Controlled Pore Structure,' J. Jpn. Ceram. Soc., 112 [5] 1084-88 (2004)
  14. H. Chai, B. R. Lawn, and S. Wuttiphan, 'Fracture Modes in Brittle Coatings with Large Interlayer Modulus Mismatch,' J. Mater. Res., 14 [9] 3805-17 (1999) https://doi.org/10.1557/JMR.1999.0514
  15. J. H. Kim, P. Miranda, D. K. Kim, and B. R. Lawn, 'Effect of an Adhesive Interlayer on the Fracture of a Brittle Coating on a Supporting Substrate,' J. Mater. Res., 18 [1] 222-27 (2003) https://doi.org/10.1557/JMR.2003.0031
  16. S. K. Kim, T. W. Kim, C. Kim, T. H. Shin, J. S. Han, S. K. Woo, and K. S. Lee, 'Indentation of YSZ/$Al_{2}O_{3}$ Layered Systems Prepared by Nano-Coating(in Korean),' J. Kor. Ceram. Soc., 42 [1] 43-9 (2005) https://doi.org/10.4191/KCERS.2005.42.1.043
  17. K. S. Lee, S. Wuttiphan, X. Z. Hu, S. K. Lee, and B. R. Lawn, 'Contact-Induced Transverse Fractures in Brittle Layers on Soft Sunstrates : A Study on Silicon Nitride Bilayers,' J. Am. Ceram. Soc., 81 [3] 571-80 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02376.x

Cited by

  1. Fracture analysis for ceramic disk with semi-elliptical crack and pore vol.15, pp.3, 2014, https://doi.org/10.1007/s12541-014-0354-5