DOI QR코드

DOI QR Code

Microstructure Development of Spark Plasma Sintered Silicon Carbide with Al-B-C

Al-B-C 첨가 탄화규소의 스파크 플라즈마 소결에 의한 미세구조 발달

  • Cho, Kyeong-Sik (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Kwang-Soon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun-Kwuon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Choi, Heon-Jin (School of Advanced Materials Engineering, Yonsei University)
  • 조경식 (금오공과대학교 신소재시스템공학부) ;
  • 이광순 (금오공과대학교 신소재시스템공학부) ;
  • 이현권 (금오공과대학교 신소재시스템공학부) ;
  • 이상진 (목포대학교 신소재공학과) ;
  • 최헌진 (연세대학교 신소재공학부)
  • Published : 2005.08.01

Abstract

Densification of SiC powder with additives of total amount of2, 4, 8 $wt\%$ Al-B-C was carried out by Spark Plasma Sintering (SPS). The unique features of the process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. The heating rate and applied pressure were kept at $100^{\circ}C/min$ and 40 MPa, while the sintering temperature and holding time varied from 1700 - $1800^{\circ}C$ for 10 - 40 min, respectively. The SPS-sintered specimens with different amount of Al-B-C at $1800^{\circ}C$ reached near-theoretical density. The $3C{\rightarrow}6H,\;15R{\rightarrow}4H$ phase transformation of SiC was enhanced by increasing the additive amount. The microstructure of SiC sintered up to $1750^{\circ}C$ consisted of fine equiaxed grains. In contrast, the growth of large elongated grains in small matrix grains was shown in sintered bodies at $1800^{\circ}C$, and the plate-like grains interlocking microstructure had been developed by increasing the holding time at $1800^{\circ}C$. The grain growth rate decreases with increasing amount of Al-B-C in SiC starting powder, however, the both of volume fraction and aspect ratio of large grains in sintered body increased.

Keywords

References

  1. L. J. Schioler, 'Heat Engine Ceramics,' Am. Ceram. Soc. Bull., 64 [2] 268-94 (1986)
  2. K. Yamada and M. Mohri, 'Properties and Applications of Silicon Carbide Ceramics'; pp. 9-29 Silicon-Carbide Ceramics Ed. by S. Somiya and Y. Inomata, Uchida Rokakuho Publishing Ltd., 1988
  3. M. Srinivasam, 'The Silicon Carbide Family of Structural Ceramics,' Structural Ceramics, Ed. by J. B. Wachtmann. Jr., Academic Press, 1989
  4. W. L. Vaushn and H. G. Maahs, 'Active-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air,' J. Am. Ceram. Soc., 73 [9] 1540-45 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb09793.x
  5. S. Prochazka, 'Sintering of Silicon Carbide,' Ceramics for High Performance Applications, Ed. by Burke, Gorum and Katz, Brook Hill, 239, 1974
  6. W. Bocker and H. Hausner, 'The Influence of Boron and Carbon Additions on the Microstructure of Sintered Alpha Silicon Carbide,' Powder Metal. Inter., 10 [2] 87-9 (1976)
  7. D. H. Stutz, S. Prochazka, and J. Lorenz, 'Sintering and Microstructure Formation of $\beta$-SiC,' J. Am. Ceram. Soc., 68 [9] 479-82 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb15812.x
  8. A. H. Heuer, G. A. Fryburg, L. U. Ogbuji, and T. E. Mitchell, '$\beta\rightarrow\alpha$ Transformation in Polycrystalline SiC : I, Microstructural Aspects,' J. Am. Ceram. Soc., 61 [9-10] 406-12 (1978) https://doi.org/10.1111/j.1151-2916.1978.tb09348.x
  9. L. U. Ogbuji, T. E. Mitchell, and A. H. Heuer, '$\beta\rightarrow\alpha$ Transformation in Polycrystalline SiC : III, Thickening of $\alpha$ Plates,' J. Am. Ceram. Soc., 64 [2] 91-9 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb09583.x
  10. M. Omori and H. Takei, 'Pressureless Sintering of SiC,' J. Am. Ceram. Soc., 65 [6] C92-C96 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10460.x
  11. M. A. Mullar and V. D. Krstic, 'Mechanical Properties of $\beta$-SiC Pressureless Sintered with $Al_{2}O_{3}$ Additions,' Acta Metall. Mater., 42 [1] 303-03 (1994) https://doi.org/10.1016/0956-7151(94)90072-8
  12. M. A. Mulla and V. D. Kristic, 'Low-Temperature Pressureless Sintering of $\beta$-Silicon Carbide with Aluminum Oxide and Yttrium Oxide Additions,' Am. Ceram. Soc. Bull., 70 [3] 439-43 (1991)
  13. N. P. Padture, 'In Situ-Toughened Silicon Carbide,' J. Am Ceram. Soc., 77 [2] 519-23 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07024.x
  14. M. A. Mulla and V. D. Kristic, 'Mechanical Properties of $\beta$-SiC Pressureless Sintered with $Al_{2}O_{3}$ Additions,' Acta Metall. Mater., 42 [1] 303-08 (1994) https://doi.org/10.1016/0956-7151(94)90072-8
  15. N. P. Padture and B. R. Lawn, 'Toughness Properties of a Silicon Carbide with an In Situ Induced Heterogeneous Grain Structure,' J. Am. Ceram. Soc., 77 [10] 2518-22 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  16. Y. W. Kim, K. S. Cho, and J. G. Lee, 'Effect of Large $\beta$-Silicon Carbide Seed Grains on Microstructure and Fracture Toughness of Pressureless-Sintered $\alpha$-Silicon Carbide,' Kor. J. Ceram., 2 [1] 39-42 (1996)
  17. Y. W. Kim, M. Mitomo, and H. Hirotsuru, 'Microstructural Development of Silicon Carbide Containing Large Seed Grains,' J. Am. Ceram. Soc., 80 [1] 99-105 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  18. Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, 'Effect of Initial $\alpha$-Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide,' J. Am. Ceram. Soc., 81 [12] 3136-40 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  19. C. S. Lee, Y. W. Kim, D. H. Cho, H. B. Lee, and H. J. Lim, 'Microstructure and Mechanical Properties of Self-Reinforced Alpha-Silicon Carbide,' Ceram. Int., 24 489-95 (1998) https://doi.org/10.1016/S0272-8842(97)00047-3
  20. S. H. Kim, Y.-W. Kim, and M. Mitomo, 'Microstructure and Fracture Toughness of Liquid-Phase-Sintered $\beta$-SiC Containing $\beta$-SiC Whiskers as Seeds,' J. Mater. Sci., 38 1117-21 (2003) https://doi.org/10.1023/A:1022812427677
  21. R. M. Williams, B. N. Juterbock, S. S. Shinozaki, C. R. Peters, and T. J. Whalen, 'Effects of Sintering Temperatures on the Physical and Crystallographic Properties of $\beta$-SiC,' Am. Ceram. Soc. Bull., 64 [1] 1385-89 (1985)
  22. B.-W. Lin, M. Imai, T. Yano, and T. Iseki, 'Hot Pressing of $\beta$-SiC Powder with AI-B-C Additive,' J. Am. Ceram. Soc., 69 [4] C67-C68 (1986)
  23. S. Shinozaki, R. M. Williams, B. N. Juterbock, W. T. DonIon, J. Hangas, and C. R. Peters, 'Microstructural Developments in Pressureless-Sintered $\beta$-SiC Materials with AI, B, and C Additions,' J. Am. Ceram. Soc., 64 [10] 1389-93 (1985)
  24. J. J. Cao, W. J. Moherlychan, L. C. De Jonghe, C. J. Gilbert, and R. O. Ritchie, 'In Situ-Toughened Silicon Carbide with AI-B-C Additions,' J. Am. Ceram. Soc., 79 [2] 461-69 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08145.x
  25. W. J. Moberlychan, J. J. Cao, and L. C. De Jonghe, 'The Roles of Amorphous Grain Boundaries and the Transformation in Toughening SiC,' Acta Mater., 46 [5] 1625-35 (1998) https://doi.org/10.1016/S1359-6454(97)00343-1
  26. W. J. Moberlychan and L. C. De Jonghe, 'Controlling Interface Chemistry and Structure to Process and Toughen Silicon Carbide,' Acta Mater., 46 [7] 2471-77 (1998) https://doi.org/10.1016/S1359-6454(98)80030-X
  27. D. Chen, M. E. Sixta, X. F. Zhang, L. C. De Jonghe, and R. O. Ritchie, 'Role of the Grain-Boundary Phase on the Elevated-Temperature Strength, Toughness, Fatigue and Creep Resistance of Silicon Carbide Sintered with AI, B, and C,' Acta Mater., 48 [18-19] 4599-608 (2000) https://doi.org/10.1016/S1359-6454(00)00246-9
  28. X. F. Zhang, Q. Yang, and L. C. De Jonghe, 'Microstructure Development in Hot-Pressed Silicon Carbide: Effects of Aluminum, Boron, and Carbon Additives,' Acta Mater., 51 3849-60 (2003) https://doi.org/10.1016/S1359-6454(03)00209-X
  29. X. F. Zhang, G. Y. Lee, D. Chen, R. O. Ritchie, and L. C. De Jonghe, 'Abrasive Wear Behavior of Heat-Treated ABC-Silicon Carbide,' J. Am. Ceram. Soc., 86 [8] 1370-78 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03478.x
  30. M. Tokia, 'Trends in Advanced SPS(Spark Plasma Sintering) System and Technology,' J. Soc. Powder Tech. Jpn., 30 [11] 790-804 (1993) https://doi.org/10.4164/sptj.30.11_790
  31. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara, and M. Tokita, 'Effects of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide,' J. Ceram. Soc. Jpn., 103 [7] 740-42 (1995) https://doi.org/10.2109/jcersj.103.740
  32. T. Nishimura, M. Mitomo, H. Hirotsuru, and M. Kawakara, 'Fabrication of Silicon Nitride Nanoceramics by Spark Plasma Sintering,' J. Mater. Sci. Lett., 14 [5] 1046-47 (1995) https://doi.org/10.1007/BF00258160
  33. T. Nishimura, M. Mitomo, H. Hirotsuru, and M. Kawahara, ' Fabrication of Silicon Nitride Nano-Ceramics by Spark Plasma Sintering,' J. Mat. Sci. Lett., 14 1046-47 (1995) https://doi.org/10.1007/BF00258160
  34. Y. Zhou, K. Hirao, M. Toriyama, and H. Tanaka, 'Silicon Carbide Ceramics Prepared by Pulse Electric Current Sintering of $\beta$-SiC and $\alpha$-SiC Powders with Oxide and Nonoxide Additive,' J. Mater. Res., 14 [8] 3363-69 (1999) https://doi.org/10.1557/JMR.1999.0455
  35. S. W. Wang, L. D. Chen, and T. Hirai, 'Densification of $Al_{2}O_{3}$ Powder Using Spark Plasma Sintering,' J. Mater. Res., 15 [4] 982-87 (2000) https://doi.org/10.1557/JMR.2000.0140
  36. Y. Zhou, K. Hirao, M. Toriyama, and H. Tanaka, 'Very Rapid Densification of Nanometer Silicon Carbide Powder by Pulse Electric Current Sintering,' J. Am. Ceram. Soc., 83 [3] 654-56 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01249.x
  37. K.-S. Cho, S. Kim, H.-J. Choi, J.-G. Lee, and Y.-W. Kim, 'The Effect of La-Silicon Oxynitride on the Densification of $Si_{3}N_{4}$ Ceramics by Spark Plasma Sintering(in Korean),' J. Kor. Ceram. Soc., 38 [8] 687-92 (2001)
  38. L. Gao, H. Wang, H. Kawaoka, T. Sekino, and K. Niihara, 'Fabrication of YAG-SiC Nanocomposites by Spark Plasma Sintering,' J. Eur. Ceram. Soc., 22 785-89 (2002) https://doi.org/10.1016/S0955-2219(01)00368-5
  39. K.-S. Cho, K.-S. Lee, J.-H. Song, J.-Y. Kim, and K.-H. Song, 'Liquid Phase Sintered SiC-30wt% TiC Composites by Spark Plasma Sintering(in Korean),' J. Kor. Ceram. Soc., 40 [8] 751-57 (2003) https://doi.org/10.4191/KCERS.2003.40.8.751
  40. W. Chen, U. Anselmi-Tamburini, J. E. Garay, J. R. Graza, and Z. A. Munir, 'Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process : I. Effect of DC Pulsing on Reactivity,' Mater. Sci. & Eng., A394 132-38 (2005)
  41. U. Anselmi-Tamburini, S. Gennari, and Z. A. Munir, 'Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process : II. Modeling of Current and Temperature Distributions,' Mater. Sci. & Eng., A394 139-48 (2005)
  42. K.-S. Cho and K.-S. Lee, 'Microstructure and Mechanical Properties of Spark-Plasma Sintered SiC-TiC Composites,' Key Eng. Mater., 287 335-39 (2005) https://doi.org/10.4028/www.scientific.net/KEM.287.335
  43. Y.-W. Kim, M. Mitomo, and G.-D. Zhan, 'Mechanism of Grain Growth in Liquid-Phase-Sintered $\beta$-SiC,' J. Mater. Res., 14 [11] 4291-93 (1999) https://doi.org/10.1557/JMR.1999.0581