Study on the Community Structure of Sublittoral Meiofauna in the Barents Sea in Summer 2002, Arctic Ocean

2002년 하계 북극 바렌츠해 연안지역의 중형저서생물 군집 구조에 관한 연구

  • Published : 2005.09.01

Abstract

Meiofauna community was surveyed in the Arctic Ocean. Sediment samples were collected from six stations in the east Barents Sea and from five stations in Kongsfjorden, Svalbard during summer 2002. Eight taxa of meiofauna were identified in the Barents Sea. Meiofauna abundance ranged from 245 to 906 indiv.10 $cm^{-2}$ (mean 580 indiv.10 $cm^{-2}$) and total biomass varied from 23 and 404 ${\mu}gC10cm^{-2}$ (mean 184 ${\mug}C10cm^{-2}$) in the Barent Sea. Nematode predominated in meiofauna comprising $95.2\%$ of total abundance and $66.4\%$ of biomass. Copepods, polycheats and sarcomastigophonans were also dominant in the study area. Nine taxa of meiofauna were identified in Kongsfiorden. Meiofauna abundance ranged from 103 to 513 indiv.10 $cm^{-2}$ (mean 292 indiv.10 $cm^{-2}$) and biomass varied from 13 and 196{\mu}gC10\;cm^{-2}$ (mean 94{\mu}gC10\;cm^{-2}$) in the Kongsfiorden. Nematodes predominated in meiofauna, comprising $64.1\%$ of abundance and $64.3\%$ biomass. Copepods, polychaets, and kinorhyncha were also dominant in the study area. The meiofauna abundances from both the study areas well match with the previous reports from the various regions including the temperate areas. However the occurred taxa in the present study are only a half comparing with the reports from temperate zone. Meiofauna abundance, biomass, diversity index and species richness were much higher than in the coastal which were strongly affected by fresh water run off in the Barents Sea. The stations affected by chlorophyll had high abundance and biomass, but low diversity index and spices richness in Kongsfiorden.

북극해에서 해류나 담수의 영향으로 해양환경의 변화가 생기는 지역에 서식하는 중형저서생물의 군집구조를 파악하기 위해 2002년 7월 바렌츠해 동부 러시아 연안의 페초라해 6개 정점, 2002년 8월 스발바드섬의 킹스베이 내만 5개 정점에서 저서시료를 채집하였다. 페초라해에서는 총 8개의 분류군이 출현하였으며 출현한 중형저서생물의 총 개체수는 $245\~906indiv.10cm^{-2}$의 범위로 평균 580indiv.10$cm^{-2}$로 나타났으며 총 생물량은 $21\~404{\mu}gC10cm^{-2}$의 범위로 평균 $184{\mu}gC10cm^{-2}$로 나타났다. 선형동물이 개체수와 생물량에서 각각 $95.2\%$$66.4\%$를 나타내어 가장 우점하는 분류군으로 나타났으며 요각류와 다모류 그리고 육질편모충류가 그 다음으로 나타났다. 킹스베이에서는 총 9개의 분류군이 나타났으며 총 개체수는 $103\~513 indiv.10cm^{-2}$의 범위로 평균 $292indiv.10cm^{-2}$로 나타났다. 총 생물량은 $13\~176{\mu}gC10cm^{-2}$의 범위로 평균 $94{\mu}gC10cm^{-2}$로 나타났다. $94.1\%$의 개체수와 $64.3\%$의 생물량을 나타낸 선형동물이 가장 우점하는 분류군으로 나타났으며 요각류, 빈모류, 다모류 그리고 동문동물이 그 뒤를 이었다. 바렌츠해와 킹스베이의 평균 개체수는 일반적으로 천해역에서 나타나는 개체수 수치보다 낮은 수치를 나타냈다. 또한 일반적으로 출현하는 분류군 수에 비해 반수정도 출현하여 극지 환경에 적응한 특정분류군 만이 서식하고 있음을 확인할 수 있었다. 바렌츠해에서는 주변 해류의 흐름에 영향을 덜 받는 지역에서 높은 개체수와 생물량 그리고 다양도 지수와 풍부도가 나타났으며 담수의 유입에 따라 직접적인 영향을 받는 지역에서는 모든 값이 낮게 나타났다. 킹스베이의 경우 정점에 따라서 군집구조의 차이가 크게 나타냈는데 이는 물리적인 환경요인 보다는 클로로필과 같은 잠재적인 먹이원과 관련 이 있을 것으로 보인다.

Keywords

References

  1. 강성호, 김예동, 강재신, 유구철, 윤호일, 이원철. 2003. 북극스발바드섬 Kongsfjorden의 해양 환경 및 식물플랑크톤 모니터링 연구. Ocean Polar Res. 25:213-226 https://doi.org/10.4217/OPR.2003.25.2.213
  2. 김동성, 이재학. 2001. 시화호 퇴적물에 서식하는 중형저서 동물의 군집구조에 관하여. 환경생물. 19:159-171
  3. 김동성, 최진우, 제종길. 1998. 통영 저도와 장두도 가두리 양식장 퇴적물에 있어서 오염 모니터링을 위한 중형저서생물의 군집구조. 한국수산학회지. 31:217-225
  4. Azovsky AI. 2002. Size-dependent species-area relationship in benthos: is the world more diverse for microbes? Ecography 25:273-282 https://doi.org/10.1034/j.1600-0587.2002.250303.x
  5. Baguley JG, LJ Hyde and PA Montagna. 2004. A semiautomated digital microphotographic approach to measure meiofaunal biomass. Limnol. Oceanogr. Methods 2:18-190
  6. Burgess R. 2001. An improved protocol for separation meiofauna from sediments using colloidal silica sols. Mar. Ecol. Prog. Ser. 214:161-165 https://doi.org/10.3354/meps214161
  7. Chon TS, YS Park, KH Moon and EY Chao 1996. Patternizing communities by using an artificial neural network. Ecol. Model. 90:69-78 https://doi.org/10.1016/0304-3800(95)00148-4
  8. Coull BC. 1999. Role of meiofauna in esturine soft-bottom habitats. Australian J. Ecol. 24:327-343 https://doi.org/10.1046/j.1442-9993.1999.00979.x
  9. Dahle S, SG Denisenko, NV Denisenko and SJ Cochrane. 1998. Benthic fauna in the Pechora Sea. Sarsia 83:183-210
  10. Fabiano M and R Danovaro. 1999. Meiofauna distribution and mesoscale variability in two sites of Ross Sea(Antarctica) with contrasting food supply. Polar Biol. 22:112-123
  11. Giere O. 1993. Meiobenthology The microscopic fauna in aquatic sediment. Springer-Verlag
  12. Hecht-Nielsen R. 1990. Neurocomputing. Addison-Wesley, New York, 433pp
  13. Hempel G. 1994. Antarctic Science. Springer-Verlag
  14. Herman RL and HU Dahms. 1992. Meiofauna communities along a depth transect off halley Bay (Weddel Sea-Antarctica). Polar Biol. 12:313-320
  15. Higgins PR and H Thiel. 1988. Introduction to the study of Meiofauna. Smithsonian Institution
  16. Holte B, S Dahle, B Gulliksen and K Naes, 1996. Some macrofaunal sffects of local pollution and glacier-induced sedimentation, with indicative chemical analysis, in the sediments of two Arctic fjord. Polar Biol. 16:549-557 https://doi.org/10.1007/BF02329051
  17. Holte B and B Gulliksen. 1998. Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biol. 19:375-382 https://doi.org/10.1007/s003000050262
  18. Hop H, T Pearson, EN Hegseth, KM Kovacs, CWiencke, S Kwasniewski, K Eiane, F Mehlum , B Gulliksen, M Wlodarska-kowalczuk, C Lydersen, JM Weslawski, S Cochrane, GW Gabrielsen, RJG Leakey, OJ Lonne, M Zajaczkowski, S Falk-Petersen, M Kendall, S Wangberg, K Bischof, AY Voronkov, NA Kovaltchouk, J Wiktor, MPoltermann, G di Prisco, C Papucci and S Gerland. 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21:167-208 https://doi.org/10.1111/j.1751-8369.2002.tb00073.x
  19. Hurrell JW. 1995. Dccadal trends in the North Atlantic oscillation: Reginal temperatures and precipitation. Science 269:676-679 https://doi.org/10.1126/science.269.5224.676
  20. Huys R and GA Boxshall. 1991. Copepoda Evolution. Ray Society, London. 159:1-468
  21. Kendall MA, RM Warwick and PJ Somerfield. 1997. Species size distributions in Arctic benthic communities. Polar Biol. 17:389-392 https://doi.org/10.1007/PL00013381
  22. Kiyko OA and VB Pogrebov. 1997. Long-term benthic population changes (1920-1930s- Present) in the Barents and Kara Seas. Mar. Pollut. Bull. 35:322-332 https://doi.org/10.1016/S0025-326X(97)00113-6
  23. Kohonen T. 1989. Self-organization and Associative Memory. Springer-Verlag. Berlin, 312pp
  24. Kotwicki L, M Szymelfenig, MD Troch and M Zajaczkowski. 2004. Distribution of meiofauna in Kongsfjorden, Spitsbergen. Polar Biol. 27:661-669 https://doi.org/10.1007/s00300-004-0625-1
  25. Kucheruk NV and AV Kotov. 2002. The costal benthic communities of the Pechora Sea and Baidaratskaya Bay: A Comparative analysis. Oceanology 42:109-112
  26. Lee W, SH Kang, PA Montagna and IS Kwak. 2003. Temporal Dynamics and patterning of meiofauna community by self-organizing artificial neural networks. Ocean Polar Res. 25:237-247 https://doi.org/10.4217/OPR.2003.25.3.237
  27. Legezynska J, JM Weslawski and P Presler. 2000. Benthic scavengers collected by baited traps in the high Arctic. Polar Biol. 23:539-544 https://doi.org/10.1007/s003000000118
  28. Lippmann RP. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine April:4-22
  29. Loeng H, V Ozhigin and B Adlandsvik. 1997. Water fluxes through the Barents Sea. J. Mar. Sci. 54:310-317
  30. Mattiseen J, OV Stepanets and the shipboard scientific party. 1999. The expedition to the Kara Sea in summer 1997: Summary of the shipboard scientific results. Berichte zur Polarforschung. 300:5-16
  31. Montagna PA, BC Coull, TL Herring and BW Dudley. 1983. The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuar. Coast. Shelf Sci. 17:381-394 https://doi.org/10.1016/0272-7714(83)90124-5
  32. Pavlov VK and SL Pfirman. 1995. Hydrographic structure ans variability of the Kara Sea: Implications for pollutant distribution. Deep-Sea Res. 42:1369-1390 https://doi.org/10.1016/0967-0645(95)00046-1
  33. Pfirman SL, J Kogeler and B Anselme. 1995. Coastal environments of the western Kara and eastern Barents Seas. Deep-Sea Res. 42:1391-1412 https://doi.org/10.1016/0967-0645(95)00047-X
  34. Pogrebov VB, GI Ivanov and NN Nekrasova. 1997. Macrobenthic communities of the Pechora Sea: the past and the present on the threshold of the Priralomnoye oil-field exploitation. Mar. Pollut. Bull. 35:287-295 https://doi.org/10.1016/S0025-326X(98)80014-3
  35. Soltwedel T, V Mokievsky and I Schewe. 2000. Benthic activity and biomass on the Termak Plateau and in adjacent deep-Searegions northwest of Svalbard. Deep-Sea Res. 47: 1761-1785 https://doi.org/10.1016/S0967-0637(00)00006-6
  36. Skowronski RSP and Corbisier TN. 2002. Meiofauna distribution in Martel Inlet, King George Island (Antartica): sediment features versus food availability. Polar Biol. 25: 126-134
  37. Svendsen H, A Beszczynska-Meller, JO Hagen, B Lefauconnier, V Tverberg, S Gerland, JB Orbaek, K Bischof, C Papucci, M Zajaczkowski, R Azzolini, O Bruland, C Wieneke, J-G Winther and W Dallmann. 2002. The phisical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21:133-166 https://doi.org/10.1111/j.1751-8369.2002.tb00072.x
  38. Szymelfenig M, S Kwsaniewski and JM Weslawski.1995. Intertidal zone of Svalbard, 2. Meiobenthos density and occurrence. Polar Biol. 15:137-141 https://doi.org/10.1007/BF00241052
  39. Weslawski JM and P Adamski. 1987. Cold and warm years in south Spitsbergen coastal marine ecosystem. Polish Polar Res. 8:96-106
  40. Zajaczkowski MJ and J Legezynska. 2001. Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341-351