Comparison of the Cell Surface Barrier and Enzymatic Modification System in Brevibacterium flavum and B. Lactofermentum

  • Jang Ki-Hyo (Department of Food and Nutrition, Samcheok National University) ;
  • Britz Margaret L. (School of Agriculture and Food Systems, Gilbert Chandler Campus, The University of Melbourne)
  • Published : 2005.06.01

Abstract

To investigate impediments to plasmid transformation in Brevibacterium flavum BF4 and B. lactofermentum BL1, cell surface barriers were determined by measuring growth inhibition whilst enzymatic barriers were determined by comparing DNA methylation properties. B. lactofermentum was more sensitive to growth inhibition by glycine than B. flavum. Release of cellular proteins during sonication was more rapid for B. lactofermentum than for B. flavum. Plasmid DNA (pCSL 17) isolated from B. flavum transformed recipient $McrBC^+$ strains of Escherichia coli with lower efficiency than $McrBC^-$. McrBC digestion of this DNA confirmed that B. flavum contain methylated cytidines in the target sequence of McrBc sequences but B. lactofermentum contained a different methylation pattern. DNA derived from the B. lactofermentum transformed recipient $EcoKR^+$ strains of E. coli with lower efficiency than $EcoKR^-$, indicating the presence of methylated adenosines in the target sequence of EcoK sequences. The present data describe the differences in the physical and enzymatic barriers between two species of corynebacteria and also provide some insight into the successful foreign gene expression in corynebacteria.

Keywords

References

  1. Britz, M. L. and A. L. Demain (1985) Regulation of metabolite synthesis. pp. 617-636. In: M. Moo-Young (ed.). Comprehensive Biotechnology. Vol 1. Pergamon Press, NY, USA
  2. Yang, Y. J., C. H. Lee, and Y. M. Koo (2004) Separation of amino acids by simulated moving bed using competitive langmuir isotherm. Biotechnol. Bioprocess Eng. 9: 331-338 https://doi.org/10.1007/BF02933053
  3. Jetten, M. S. M and A. J. Sinskey (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit. Rev. Biotechnol. 15: 73-103 https://doi.org/10.3109/07388559509150532
  4. Kim, O. S., H. J. Kwak, J. H. Lee, J. M. Ha, B. J. Ha, and S. H. Lee (2004) Development of an E. coli expression cassette for the efficient production of a harmful protein. Biotechnol. Bioprocess Eng. 9: 389-392 https://doi.org/10.1007/BF02933063
  5. Ahn, J. O., J. M. Ryu, H. W. Jang, and J. K. Jang (2004) Effect of growth rate on the production of L-Proline in the fed-batch culture of Corynebacterium acetoacidophilum. Biotechnol. Bioprocess Eng. 9: 326-329 https://doi.org/10.1007/BF02942353
  6. Smith, M. D., J. L. Flickinger, D. W. Lineberger, and B. Schmidt (1986) Protoplast transformation in coryneform bacteria and introduction of $\alpha$-amylase gene from Bacillus amyloliquifacients into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 634-639
  7. Billman-Jacobe, H., L. Wang, A. Kortt, D. Stewart, and A. Radford (1995) Expression and secretion of heterologous protease by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613
  8. Haynes, J. A. and M. L. Britz (1990) The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263 https://doi.org/10.1099/00221287-136-2-255
  9. Tauch, A., O. Kirchner, L. Wehmeier, J. Kalinowski, and A. Pühler (1994) Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli. FEMS Microbiol. Lett. 123: 343-348 https://doi.org/10.1111/j.1574-6968.1994.tb07246.x
  10. Jang, K. H., P. J. Chambers, and M. L. Britz (1996) Analysis of nucleotide methylation in DNA from Corynebacterium glutamicum and related species. FEMS Microbiol. Lett. 136: 309-315 https://doi.org/10.1111/j.1574-6968.1996.tb08066.x
  11. Yoshihama, M., K. Higarshiro, E. A. Rao, M. Akedo, W. G. Shanabruch, M. T. Follettie, G. C. Walker, and A. J. Sinskey (1985) Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591-597
  12. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Mannual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
  13. Gottesman, M. E., Adhya, S., and A. Das (1980) Transcription antitermination by bacteriophage lambda N gene product. J. Mol. Biol. 140: 57-75 https://doi.org/10.1016/0022-2836(80)90356-3
  14. Hodgson, A. L. M., J. A. Hayes, M. L. Britz, and I. T. Nisbet (1989) Construction and utilisation of a Corynebacterium- E. coli shuttle vector. pp. 181-184. Proceeding of the VIIIth Biotechnology Conference. Australian Biotechnology Association, Sydney, Australia
  15. Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  16. Britz, M. L. and G. R. Best (1986) Expression of chloramphenicol resistance specified by plasmid pHY416 hosted in Corynebacterium glutamicum. Current Microbiol. 14: 13-17 https://doi.org/10.1007/BF01568095
  17. Collins, M. D., M. Goodfellow, and D. E. Minnikin (1982) A survey of the structures of mycolic acids in coryneform bacterium and related taxa. J. Gen. Microbiol. 128: 129-149
  18. Niederweis, M., E. Maier, T. Lichtinger, R. Benz, and R. Kramer (1995) Identification of channel-forming activity in the cell wall of Corynebacterium glutamicum. J. Bacteriol. 177: 5716-5718 https://doi.org/10.1128/jb.177.19.5716-5718.1995
  19. Hammes, W., K. H. Schleifer, and O. Kandler (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029-1053
  20. Hishimura, F., K. Izaki, and H. Takahashi (1969) Effect of glycine and D-amino acids on growth of various microorganisms. Agric. Biol. Chem. 33:1577-1586 https://doi.org/10.1271/bbb1961.33.1577
  21. Jang, K. H., P. J. Chambers, U. H. Chun, and M. L. Britz (2001) Characterization of the cell-surface barriers to plasmid transformation in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 11: 294-301
  22. Tomiyasu, I. and I. Yano (1984) Isonicotinic acid hydrazide induced changes and inhibition in mycolic acid synthesis in Nocardia and related taxa. Arch. Microbiol. 137: 316-323 https://doi.org/10.1007/BF00410728
  23. Liebl, W., M. Ehrmann, W. Ludwig, and K. H. Schleifer (1991) Transfer of Brevibacterium divaricatum DSM $20297^T$ Brevibacterium flavum' DSM 20411, 'Brevibacterium lactofermentum' DSM 20412 and DSM 1412, and Corynebacterium lilium DSM $20137^T$ to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Bacteriol. 41: 255-260 https://doi.org/10.1099/00207713-41-2-255
  24. Raleigh, E. A. (1987) Restriction and modification in vivo by Escherichia coli K-12. Methods Enzymol. 152: 130-141 https://doi.org/10.1016/0076-6879(87)52015-8
  25. Sancar, A. and C. S. Rupert (1978) Determination of plasmid molecular weights from ultraviolet sensitivities. Nature 272: 471-472 https://doi.org/10.1038/272471a0
  26. Raleigh, E. A., N. E. Murray, H. Revel, R. M. Blumenthal, D. Westaway, A. D. Reith, P. W. Rigby, J. Elhai, and D. Hanahan (1988) McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 16: 1563-1575 https://doi.org/10.1093/nar/16.4.1563
  27. Waite-Rees, P. A., C. J. Keating, L. S. Moran, B. E. Slatko, L. J. Hornstra, and J. S. Benner (1991) Chracterization and expression of the Escherichia coli Mrr restriction system. J. Bacteriol. 173: 5207-5219 https://doi.org/10.1128/jb.173.16.5207-5219.1991