AArEREE AT AT & 2AED 359

/ﬂ-.?_]

'63—1-]

S

(Heejin Yoo)

A% AR 24
(Mobility Reduction Scheduling for Hi

2 o & =E2 A4AG 245N FHolzd Holgda FA4E AT 2AEY PHE AYY
o Al EL A WA s d ACRAE FAM ASTH uiAg AojgAd) YAz dae wiFst
o 2AZY 7t ZAeAE Wtk W HE TAY £ Yot ole AUAY Nt o3 A
£ 2 AojdA WAste o] Briede ofnjaly] Wi 2 ATAE g s AoYA FR
oA AjAZ AL FdudEL M WAVSE Fod vizsted 2AE8 AL WA oiF I
< st AeridS A% siE Fenh daviad g d¥dse 71E I ES vuse e

ZAIE
gh-Level Synthesis)

= +
%88

(Heeyong Yoo)

£ a2, RASERA, doleua, Hxas WA, Belzele)

Abstract This paper presents a scheduling approach for synthesizing pipelined datapaths under
resource constraints. The proposed approach evaluates whether or not a scheduling solution can exist
in case an operation temporarily is assigned to the earliest or latest control step among the assignable
steps for the operation. If a solution cannot be found, it is impossible to assign the operation to that
control step due to a violation against resource constraints, and so we can eliminate that control step
among candidate assignable control steps. The proposed algorithm builds up a schedule based on
gradual mobility reduction and finds a solution that yields high performance by evaluating on the
impact on register assignment. Experiments on benchmarks show that this approach gains a
considerable improvement over previous approaches.

Key words :

1. Introduction

The scheduling in high level synthesis assigns
operations in a Control Data Flow Graph(CDFG) to
the control steps in which they will be executed. A
scheduling problem is known to be NP-complete[1]
in general, and so the existence of a polynomial
time algorithm of solving that problem is highly
unlikely. Lee et al.[2] formulate the constraints and
objective function for scheduling and then find the
optimal results of scheduling to satisfy the
constraints. Unfortunately, for large problems, this

technique is impractical in time and space. To

solve this NP-complete problem, near-optimally
t 33 A AL AFE R 2
hjyoo@suncheon.ac.kr
oA 3 Y EEdde AFE T
yooheeyong@nate.com
=ERS 0 2004 109 7Y

AArgg ¢ 2005W 59 14Y

scheduling, high level synthesis, datapath, register assignment, pipeline

heuristic methods that use the values of a defined
priority function have been proposed. Current sche-
duling algorithms can be classified based on the
basic techniques used, namely, integer program-
ming based, list scheduling based, probability based,
randomized searching based, and transformation
based. Sehwal3] is based on the list scheduling
technique. The ready operations are sorted to a list
in accordance to a non-increasing order of urgency
and are scheduled into the control steps according
to this sorted list. When the number of operations
to be scheduled in a control step exceeds the
number of resources, the remaining operations are
delayed. PLS[4,5] uses a combination of forward
and backward scheduling to schedule a loop under
resource constraint. The previously scheduled ope-
rations are iteratively moved up and down by

using the priority functions to accomodate the

360 ARG g A2 2 o] A 32 d A 7 2B

ready-yet unscheduled operations. Different from
Sehwa, in which operations are not allowed to be
relocated, PLS reassigned scheduled operations to
reduce the turn-around time of a loop. Choil6]
checks the critical paths to see whether operations
on the critical paths can be scheduled -with the
resource constraints, and inserts delay operators
into the critical paths in case of g fatlure. In each
iteration, an operation type is selected first by the
use of a priority function. One of the operations
with the smallest force in the least dense partition
of the distribution graph of the selected operation
type is then scheduled. Hwang et al[7] have shown
a scheduling algorithm for distributing operations
equally among partitions to maximize hardware
sharing. The algorithm picks the least dense parti-
tion and then picks the least free operation in that
and Knight[8]
approximation algorithm known as force-directed

partition. Paulin introduced an
scheduling, which is an algorithm that tries to find
minimal resource schedules under given time con-
straints. The intent of force-directed scheduling is
to reduce the number of functional units, registers,
and buses required by balancing the concurrency of
the operations assigned to them but without leng-
thening the total execution time. The algorithm is
iterative, with one operation scheduled in each
iteration. The selection of the control step in which
it will be placed is based on achieving a balanced
distribution of operations in each control step.
Given hardware constraints, the force-directed list
scheduling kernel{8] schedules one of operations
into a control step if the given modules are still
available. The scheduling priority is measured by
the total force of assigning an operation in a
specific possible step. The smaller the total force,
the higher priority of scheduling.

In the algorithms of previous researches, an
operation being scheduled is selected by depending
on a value of priority function. Those algorithms
schedule all the operations by assigning it to a
control step among all assignable control steps. As
a result, those algorithms cannot always guarantee
the optimal solution.

In this paper, we proposes a scheduling approach
for synthesizing pipelined datapaths under resource

constraints. A scheduling problem can be defined as
follows: given a fixed amount of resources, find the
fastest schedule that satisfies the given set of
constraints. We present a technique that builds up
a schedule based on gradual mobility reduction. It
finds a solution by evaluating on assigning opera—
tions to each control step of the reduced mobility
and its impact on register assignment.

This paper is organized as follows. Section 2
explains the proposed scheduling algorithm, Section
3 presents the violation evaluation algorithm for
detecting any violation against resource constraints,
and Section 4 considers assigning operations to
each control step of the reduced mobility and its
impact on Tregister assignment. In section 5, we
describe the time complexity of the proposed
algorithm. Experimental results are shown in
Section 6. Finally, concluding remark are made in

section 7.

2. Scheduling algorithm

Consecutive tasks in the pipelined datapaths are

initiated at latency[6]l. The minimum achievable

latency can be obtained by considering the resource
the precedence con-

constraints and analyzing

straints. The lower bound of latency for a DFG is

given by
ks
maXy < g a (7%:] D
where N, R, and 2D, are the number of

operations of type k, the number of functional units

of type %k and the delay of each unit
respectivelyl5]. The initial set of assignable control
steps for all operations is obtained by using both
As Soon As Possible (ASAP) scheduling and As
Late As Possible (ALAP) scheduling. Operations on
the critical paths are checked so as to determine
whether they can be scheduled with the availahle
functional units and latency. If the operations on
the critica} paths cannot be scheduled due to
resource conflicts, a new set of assignable cantrol
steps should be recalculated after increasing the
number of control steps by one.

Verhaegh et all9] have shown an incremental

way for computing the changes in the distribution

FAFERAAS AT G S 2AEY 361

functions, based on gradual time frame reduction.
Instead of reducing in each iteration the time frame
{a,,.-+b,} of an operationv to one timet, they
decide to reduce the time frame with only one time
point, ie, to {a, +1,...b,} or {a,,...b,+1}. They
consider the difference of force between the earliest
and latest time frame among the assignable time
frame of each operation as force gain by reducing
the time frame of an operation and keeps on
scheduling by selecting an operation with maximum
force gain and reducing the worst side time frame
of the operation.

Different from Verhaegh's method, Our work
focuses on evaluating whether or not a scheduling
solution can exist in case an operation temporarily is
assigned to the earliest control step or the latest
control step among the assignable steps for the
operation. Let Sg and S, be the control steps into
which operation op, is scheduled by the ASAP and
ALAP algorithms. Clearly, £, < L;. In a feasible
schedule, op;, must begin its execution in a control step
no sooner than Sg and no later than Sz,. The number
of control steps between Sg and 97, is called the
opi(ie. mobility(op,) =
{8 | B, <j < L})[10]. Figure 1 shows the principle

mobility of operation

of scheduling by the proposed method. Figure 1(a)
shows the mobility of every operation. Let us assume
that the number of available resources for five
operations of the same type is two. In figure 1(a), the
mobility of operation 2 range from control step 0 to
control step 2. If this operation is assigned to the
earliest control step 0 or the latest control step 2, it is
impossible to schedule other operations due to
resource constraints, and so we must eliminate the
control steps for scheduling operations as shown in

es\P 0 1 23 4
cs0 cs0 (
csl csl
cs2 I I es2 X I I

(a) (b)
Figure 1 the principle of scheduling (a) the mobility

of operations (b) the result of scheduling

in figure 1(b).

The scheduling process shown in Figure 2 is as
follows. First, the scheduling algorithm begins by
temporarily assigning an operation to the earliest
control step, ie., ASAP value, or the latest control
step, i.e, ALAP value, among the assignable steps
of the operation. Once an operation is assigned to
the control step, the violation evaluation algorithm
determines whether or not the assignment of the
operation to the control step violates resource con-
straints. If it is impossible to assign the operation
to the control step due to resource conflict, the
scheduling algorithm eliminates that control step by
reducing the mobility of the operation. If the ASAP
value of an operation is greater than the ALAP
value after the reduction of mobility, operations
cannot be scheduled within the current number of
Thus,

above process after

control steps. the algorithm repeats the

increasing the number of
control steps by one. The scheduling algorithm is
reiterated until reduction of mobility cannot be
obtained. When
reduction and the modified ASAP value of an

operation is the same as the modified ALAP value

there is no further mobility

for all operations, the scheduling is complete. If the
values differ, assigning operations to each control
step of the reduced mobility and its effectiveness

on register assignment leads to the schedule.

3. Violation evaluation

Lee et allll] have shown an algorithm for
scheduling a loop in a pipelined fashion such that
the iteration time is minimized. The algorithm
returns a feasible schedule of DFG if any one has
been found. Whenever a violation against the re-
source constraint is detected in a certain state,
scheduled into that

rescheduled to several other states. The selection of

some operations state are
candidate operations for rescheduling is based on a
priority function, called as variability. Variability of
an operation is defined as the difference between
the average hardware cost required to implement
operations scheduled into a state in the look-ahead
schedule and the resource constraint. The look-
ahead schedule is obtained by delaying operation as
little as possible. Since the smaller the variability

362 BARAVIY=EA:

(1) Determine the latency.

Al2E B olE A R/ A 7 (068

(2) Calculate the initial set of assignable control steps

(3) Find the critical path in the DFG

if (resource conflict on the critical path)

then recalculate the initial set after increasing the number of control steps by 1.

(4) Repeat following sub-steps for all the operations, op;

(4-1) Assign an operation to the earliest control step of the operation temporarily.

(4-2) if (violation_evaluation())

then Assign an operation to ASAP control step of the operation.

else eliminate the control step.

if (ASAP(p;) > ALAP(gp,))

then Go to step 4 after increasing the number of control steps by 1.

(4-3) Assign an operation to the latest control step of the operation temporarily.

(4-4) if (violation_evaluation())

then Assign an operation to ALAP control step of the operation.

else eliminate the control step. -

if (ASAP(op;) > ALAP(0p)))

then Go to step 4 after increasing the number of control steps by 1.

(5) if (ASAP(op;) = ALAP(0p;))
then scheduling copmplete

else register_minimization()

Figure 2 scheduling algorithm

value is, the better the corresponding candidate
operation is. The violation resolving for the reso-
urce constraint relies on variability for choosing
operations for rescheduling.

Different method, Our
algorithm relies on the freedom of an operation to

from Lee's proposed

assign its resource for detecting any violation

against resource constraint. The scheduling of
operations in a DFG entails placing the operations
in one of [partitions Po,P1,... P, where [/ is the
latency. The operations scheduled into control steps
k+mi(m=012,.) run concurrently, as they are in
the same partition ZF,. The violation evaluation
algorithm determines whether an assignment of the
operation to one of [partitions violates resource
constraints within the assignable control steps
while preserving the dependency between opera-
The violation evaluation principle is as

If a

operation n is M, and an expanded set of its

tions.

follows. set of assignable partitions for

partitions is £,, then F, = M, in the initial state

of scheduling. In the process of obtaining a

schedule, if the partitions belonging to M, are

4.,5,-Kk, the operations already assigned to the

partitions 4.4,k are 0p;;;0D;9,-, 0P;1,0Pj95-» 0Py

Opy9»--, Tespectively, and the sets of assignable
partitions for those operations are M,,M,,.., M,

My, My, M;

111].2, -« My, My ., Tespectively, then Lys

My, My, My ., means the partitions are to be ex-
panded to resolve a violation against the resource
constraints. P,=MUM UM,U...UM,

UM, U UMy UM,.... If there exists at least one

Therefore

partition among the elements of £, to which the
resources are not assigned, the violation should be
resolved. However, if all of the resources were
assigned to those partitions that correspond to all

elements of F,, the violation cannot be resolved.
Table 1 shows an example of the evaluation of a
violation against resource constraints. Table 1(a)
represents the mobilities of five operations that use
resources of the same type. Table 1(b) means that
four operations are already assigned to two
resources. Then, if operation op, demands a reso- .
urce assignment to partition F,, a set of assignable

partitions for operation op, is {F} and an expan-

HASERIS AR WA F2 2AEY 363

ded set of assignable partitions for operation op, in
the initial state of scheduling is {F,). Because a
set of operations already assigned to partition 5,
are {op;,0op;} and the set of assignable partitions
for those operations are {F, A}, partition P, is
expanded into {F,, P} to resolve a violation against
the resource constraints. As a result of this pro-

cess, an expanded set of assignable partitions for

op, is (F,P,P,}. Therefore, we can assign
operation op, to partition F, after moving op, to

partition P, and op, to partition 7.

Table 1 evaluation of a violation against resource
constraints
(a) mobility of operations

operation
schedulin; opy op,y opy opy op,
ASAP 0 0 1 1 0
ALAP 1 0 2 1 o

(b) resource assignment for operations

resource
partition B R
Py opo op1
Py op2 ops3
P>

The violation evaluation algorithm tries to assign
resources to the partitions corresponding to the
ASAP value of all operations. If there is resource
conflict in any partition due to resource constraints,
one operation out of the operations in the relevant
partition is selected to be reassigned. In selecting
an operation that should be moved to the next
partition due to resource conflict in a partition, the
violation evaluation algorithm selects the most free
operation to assign its resource. Here, we define a
novel function, freedom, which is based on proba-
bility. This function can increase the possibility of
resolving resource conflicts even in the next
partition. The freedom of an operation is defined as

Mop;) — Average (M(successors(op;)))
where M denotes the mobility of an operation and
successors() denotes the set of all successors of the

same type of op;.

Figure 3 shows the proposed violation evaluation
algorithm for detecting any violation against reso-
urce constraints. The algorithm tries to assign
resources to the partitions corresponding to the
ASAP control step of operations. If there are any
resource conflicts in that partition due to resource
constraints, an operation with the largest freedom
among operations in that partition is selected to
vield. It can also increase the possibility of resol—
ving any violation against resource constraints at

the continuing resource conflict.

4. Register Minimization

In order to illustrate how the function used by
scheduling can capture the requirement of the
register assignment, we use the concepts were
taken from forward-looking objective functions [12].
We assume that a variable is alive at the end of
the control step where it's created until the
beginning of the control step where it's consumed.
The number on the right side of each scheduling
instance in figure 4 indicates the number of
variables that are alive in each control step. A
variable cut refers to the variables that are alive in
a scheduled CDFG between control steps. The
scheduling instances in figure 4 illustrate the
observation that moving a group of two operations
can impact the maximum number of registers by
two variables. The key observation in figure 4 is
that the effectiveness of the register assignment is
directly impacted by function proportional to the
sum of lifetimes of variable. Generally, variables
that are alive for shorter lifetime interval are better
for minimizing the number of registers since the
likelihood that

variables is reduced. Due to the nature of register

they will overlap with other
assignment problem, in addition to the lifetime of a

variable, we must also consider the interplay
among all variables. In order to address this, we
use the concept of weighted lifetime to characterize
individual variable lifetimes. The notion of weighted
lifetime is to model the observation that variables
that are alive while many others are also alive are
adversely impact the ultimate

more likely to

number of required registers than otherwise.

364 AEATIEEA ALY R o] A 2B A T ZQ0058)

violation_evaluation_algorithm()

{
Jor Cop)
{

if (there are available resources in a partition, ASAP(op,)%Latency)

then return success;

else if (yield(an operation which has the largest freedom of operations in that partition))

then return success;

else return fail;

}
}
yield(0p,)
{

yield(all successors);
if (ASAP(gp,) = ALAP(gp)) return fail;

ASAP(017,')4—";

if (there are available resources in a partition, ASAP(op ;)VeLatency)

then return success;

else if (yield(an operation which has the largest freedom of operations in that partition))

then return success;

else return fail;

Figure 3 violation evaluation algorithm

\

——
_—
i9:10,76"
—]
~ o

.
A 5
©)
3
v v v . v v v Vari
Variable ariable
X vy oz & X Yoz oy

Figure 4 scheduling and variable-cut tradeoffs

The following steps describe a method to com-
pute the longest possible variable lifetimes and
worst-case the number of the variables that are
alive between control steps. The cardinality of
variable cuts play an important role in determining
how many registers are required for a given
scheduled computation. In general, if a variable
belongs to several large cuts, then it’s more likely
to remain in large cuts. Ultimately, the size of the

largest variable cut will determine the minimum

number of required registers for a given schedule.
Since we are interested in reducing lifetime of all
variables, we select the tentative schedule with the
most negative combined weighted lifetime.

step 1. Calculate the as-soon-as-possible(ASAP)
creation and as-late-as-possible(ALAP) consumption
for each variable. Additionally, determine the life-
time of each variable L(z):
L(z)= ALAP(z) — ASAP(z)
ASAP()
ALAP() indicates the latest control step at which

where indicates the earliest and

a variable can be alive.
step 2. For each variable create a vector V,,(z),

which denotes the number of variables which are
alive in each control step that variable & is alive.
We define the set V,,(z) for a variable z:
Voo (@) ={W, V3, .., V}}
where V; is the cardinality of the variable-cut in

control step %, if variable & is alive in control step

o
do
B
Hy
e
ox
tjo
=2

¢ and O otherwise.
step 3. Calculate weighted lifetime of each variable.
WL(z) = maz (V,,(z)) « L{z)
step 4. Calculate the combined weighted lifetime
cWL:

cWL= z": WL(z)

=1
where Z; represents the i-th variable in the

given computation CDFG, and n is the total num-
ber of variables.

Note when there is no further mobility reduction
in the scheduling algorithm shown in figure 2, the
proposed algorithm finds a solution by evaluating
on assigning operations to each control step of the
reduced mobility and its combined weighted lifetime
on register assignment.

5. Time complexity

The scheduling time in the worst case is

0 (ngm), where m and m are the number of
operations in a DFG and the average mobility per
operation, respectively. The time complexity can be
derived as follows. The violation evaluation algo-
rithm for detecting any violation against resource
constraints executes in the worst case as many

times as the number of assignable control steps for

A EE S Ha AAET 365

a C++ program running on a PC environment. To
evaluate the performance of the algorithm, we have
conducted experiments on a set of applications
available from the literature[3,13]. The experiments
are repeated on the benchmarks for different reso-
urce constraints. The scheduled results are com-
pared with that by ALPS[2], Sehwal3], PLSI5],
Choil6], HALI8] and Lee[11].

A. A 16-point FIR filter (chaining model)

In a pipelined 16-point digital FIR filter example
borrowed from [3], the clock cycle is lengthened so
that a multiplication takes only one cycle while two
additions can be executed within a cycle (chaining).
Table 2 shows the scheduling results for the FIR
filter using both Sehwa and our proposed method.
Since the proposed algorithm does not yet perform
register allocation or mapping, a complete compa-
rison between it and the whole of HAL system is
not possible. However, to provide some form of
yardstick, manual register assignments were made
for each version of the design. Comparing the
results of proposed method and Sehwa one can see
that for the examples, designs with the same
register count and fewer or same mux inputs were

found. Table 3 shows comparative statistics on vari—

Table 2 Comparision of scheduling results for the

)) . . FIR filetr
all operations. Therefore, it has the execution time
9 . . scheduling Sehwa Sehwa Proposed
of O(n m) The proposed scheduling algorithm resources (Greedy) |{(Optimized) | method
calls the violation evaluation algorithm as many # of adders 5 5 5
times as the number of operations, resulting in an # of multipliers 3 3 3
overall execution time of O(n*m). # of registers 18 18 18
. # of mux inputs 27 23 23
6. Experimental Results delay time
6 6 6
We have implemented the proposed algorithm in (# of control steps)
Table 3 The pipelined synthesis of the 16-point digital FIR filter
of multipliers 8 4 3 3 2 2 1 1
of adders 15 8 6 5 4 3 2 1
Latency 1 2 3 3 4 5 8 15
Sehwa 7 6
HAL 6
R Choi 6 6 6 7
delay time a 6 A 5 6
(# of control steps) wang
Lee 6 6 6 6 6 7 10 16
Proposed
method 6 6 6 6 6 6 10 15

366 AEAGEH=FA 2" F o& A 32 A A 7T 30068

ous design components. As shown in Table 3, for

each combination of resource constraints, our
scheduler accomplishes a schedule with the mini-
mum delay time.

B. the fifth-order digital wave filter

This example has a relatively large number of
loop carried data dependencies as well as intra-loop
dependencies. We assume that there are no data
dependencies between iteration; i.e. the outputs of
the data flow graph will not feed back into the
inputs. We have achieved the minimal number of
resources for each latency and we have also
minimized the delay time. As most systems do, we
suppose a multiplication takes two cycles (multi-
cycling) while an addition takes one cycle to com-
plete. The critical path length is 17 cycles. Under
the resource constraints, we have near optimally
minimized both the latency and the delay for most
of the case. Table 4 shows the scheduling results
for the elliptic filter using both HAL and our
proposed method. Since the proposed algorithm does
not yet perform register allocation or mapping, a
complete comparison between it and the whole of
HAL system is not possible. However, to provide
some form of vyardstick, manual register assign-
ments were made for each version of the design.

Comparing the results of proposed method and HAL

Table 4 Comparision of scheduling results for the

elliptic filter

Scheduling HAL Proposed method

resources

of adders 3 3 2 3 3 2
of multipliers 2 1 2 1 1
of registers 12 12 12 12 12 12
of mux inputs 31 34 26 31 30 21
| delay time 17 |18 19| 17| 18] 19
(# of control steps)

one can see that for the examples, designs with the
same register count and fewer mux inpufs were
found. Table 5 shows comparative statistics on
various design components. As shown in Table 5,
with the exception of the resource constraint of
only one adder and one multiplier, we observed
that the proposed scheduler achieves the same
results as the ILP.

7. Conclusion

A scheduling algorithm for synthesizing pipelined
datapaths under resource constraints has been
presented. The algorithm builds up a schedule
based on gradual mobility reduction and finds a
solution that yields high performance by evaluating
on the impact on register assignment. The success
of an optimization algorithm often depends on
carefully designed and tuned objective function.
Experimental results have shown that our
methodology is indeed very effective.

For most real designs, the saving in register
requirements can be substantial relative to the
extra overhead required for additional functional
units. So we need to obtain more information in

order to improve the schedule.

Reference

{11 Narasimhan, M. and Ramanujam, J., "Improving
the computational performance of ILP-based
problems,” Proc. of Int. Conf. on Computer-Aided
Design, pp. 593-596, 1998.

{21 C. T. Hwang, Y. C. Hsu and Y. L. Lin "Optimum
and Heuristic Data Path Scheduling under
Resource Constraints,” Proc. of the 27th Design
Automation Conference, pp. 65-70 July 1990.

[3] N. Park and A. C. Parker, "Sehwa: A software
package for synthesis of pipelines from behavioral
specification,” IEEE Trans. on Computer-Aided
Design, vol. 7, pp. 356-370, March 1988.

Table 5 The pipelined synthesis of the fifth-order digital wave filter

of multipliers 8 4 3 2 2 2 2 1 1 1 1
of adders 26 13 9 7 6 5 4 3 2 1
Latency 1 2 3 4 5 6 7 8 9 13 26
Optimum[2] 17 17 18 19 19 17 18 20 22 23 33
R PLS 17 17 18 19 19 17 18 20 22 23 33
delay time N
. Sehwa 17 17 18 19 20 21 20 22 23 24 33
(# of control steps) ~
Proposed 17 17 | 18 | 19 | 19 | 17 | 18| 20 | 2 | 23 | x
method

AAFERAE AL AAATEA F2 2AEY 367

[4]) Hwang, C.T., Hsu, Y.C, and Lin, Y.L. "Sche-
duling for functional Pipelining and Loop
Winding,” Proc. of the 28th Design Automation
Conference, pp. 764-769, 1991.

[5] Hwang, C.T., Hsu, Y.C, and Lin, Y.L., "PLS: A
scheduler for pipeline synthesis,” IEEE Trans. on
CAD/ICAS, vol. 12, no. 9, pp. 1279-1286, Sept.
1993.

[6] Choi, Y.H., "Synthesis of pipelined data paths,”
Proc. of Int. Conf. on Computer-Aided Design, pp.
36-40, Jan. 1992.

{7] Hwang KS., Casavant AE, Chang C.T. and
Manuel A. d'Abreu, "Scheduling and Hardware
Sharing in Pipelined Data Path,” Proc. of Int.
Conf. Computer-Aided Design, pp. 24-27, 1989.

[8] Paulin P.G. and Knight JP., "Force-directed
scheduling for behavioral synthesis of ASIC's,”
IEEE Trans. on Computer-Aided Design, vol. §,
pp. 661-679, March 1989.

[9] Verhaegh W.JF.J, Lippens PER, Aarts EHL,
Korst JHM., A. van der Werf and JL. van
Meerbergen, "Efficiency Improvements for Force-
Directed Scheduling,” Proc. of Int. Conf. Computer-
Aided Design, pp. 286-291, 1992.

[10] D. Gajski, A. Wu, N. Dutt and S. Lin, HIGH-
LEVEL SYNTHESIS Introduction to Chip and
Syatem Design, pp.213-258, Kluwer Academic
Publishers, 1992.

[11] Lee TF., Wu AC. Gajski D.D. and Lin Y.L, "An
effective methodology for functional pipelining,”
Proc. of Int. Conf. Computer-Aided Design, pp.
230~233, 1992.

(121 J. L. Wong, S. Megerian, and M. Potkonjak,
"Forward-Looking Objective Function: Concept &
Applications in High Level Synthesis,” Proc. of
the 39th Design Automation Conference, June
2002.

[13] S. Kung, H. Whitehouse and T. Kailath, VLSI and
Modern Signal Processing,, pp.258-264, Prentice
Hall, 1985.

3 2

11990 2¢ 93UIgE ARALEH
((2Ah. 1992 29 Fuistm WAL
D gIAAD. 20009 8Y EUEm WA
AT (A, 20029 3Y~FA +=H
AYde AFEAet] 2 BAEE
£ AAAEE, 95T, dud=

A5

3 &

1996 29 LBRNHw AFEH TGN
§ Ab. 1998 2¢ E=Uistm AFEITE
F(AAD, 20009 2¥9 FFHeta AFH
FetEatAgE). 2000 29~20034 8
2 (ERNALZE 720039 3¢~
20054 49 (MY 2, BAR}
AR QIEH o, dultiE Al2", muid AFH

