Nonlinear Three-dimensional Analysis of Piled Piers Considering Coupled Cap Rigidities

교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석

  • 원진오 (연세대학교 공과대학 토목공학과) ;
  • 정상섬 (연세대학교 공과대학 토목공학과)
  • Published : 2005.08.01

Abstract

A coupled three-dimensional pile group analysis method was developed by considering complex behavior of sub-structures (pile-soil-cap) which included soil nonlinearity and the behavior of super-structure (pier). As an intermediate analysis method between FBPier 3.0 and Group 0.0, it took advantages of each method. Among the components of a pile group, individual piles were modeled with stiffness matrices of pile heads and soils with nonlinear load-transfer curves (t-z, q-z and p-y curves). A pile cap was modeled with modified four-node flat shell elements and a pier with three-dimensional beam element, so that a unified analysis could be possible. A nonlinear analysis method was proposed in this study with a mixed incremental and iteration techniques. The proposed method for a pile group subjected to axial and lateral loads was compared with othe. analytical methods (i.e., Group 6.0 and FBPier 3.0). It was found that the proposed method could predict the complex behavior of a pile group well, even though piles were modelled simply in this study by using pile head stiffness matrices which were different from the method introduced in FBPier 3.0.

. 본 연구에서는 지반의 비선형을 고려한 하부구조(말뚝지반말뚝캡)의 복잡한 거동과 상부 피어구조와 연계된 상$\cdot$하부 일체화 해석을 수행할 수 있는 3차원 해석기법을 개발하였다. FBPier 3.0과 Croup 6.0의 중간단계에 해당하는 해석기법으로 각 해석기법의 장점을 취하고 단점을 보완하였다. 군말뚝기초 중 말뚝은 말뚝두부 강성행렬을 이용하여 모델링하였으며, 지반은 비선형 하중전이곡선(t-z, q-z, p-y곡선)으로 나타내었다. 말뚝캡은 6개의 자유도를 갖는 개선된 4절점 평면쉘(Flat shell)요소루 교각(피어)은 3차원 보(Beam)요소로 모델링 하여 상$\cdot$하부 일체해석이 가능하게 하였다. 말뚝두부 강성행렬의 하중크기에 따른 비선형성을 고려하기 위하여 점증하중-할선계수법을 제안하였다. 기존의 비선형 해석기법과의 비교$\cdot$분석 결과, 본 해석기법이 말뚝을 FBPier 5.0과 달리 말뚝두부 강성행렬을 이용하여 모델링 하였어도 말뚝두부 및 교각 상단에서의 변위를 비교적 정확히 산정 가능하였다.

Keywords

References

  1. 도로교설계기준 해설(하부구조편) (2001), 대한토목공학회, pp.268-272
  2. 원진오, 정문경, 곽기석, 정상섬 (2004), '홍수시 충격하중 및 유수압을 고려한 교량기초 해석', 대한토목학회지, 제24권, 제1C호, pp.49-55
  3. 이완훈 (1995), 면내 회전자유도를 가진 변이 평면 쉘요소의 개발과 이를 적용한 적응적 체눈 세분화, 박사학위논문, 한국과학기술원 토목공학과
  4. 정상섬, 서정주, 원진오 (2002), 'Analysis of Piled Piers Considering Riverbed Scouring', 한국지반공학회 논문집, 제18권, 3호, pp.43-50
  5. Allen, M. B. and Isaacson, E. L. (1998), Numerical analysis for applied science, John Wiley & Sons
  6. Ashour, M. and Norris, G. (2003), 'Lateral Loaded Pile Response in Liquefiable Soil', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.6, pp.404-414 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(404)
  7. Chow, Y. K. (1987), 'Three-Dimensional Analysis of Plie Groups', Journal of Geotechnical Engineering, Vol.113, No.6, pp.637-651 https://doi.org/10.1061/(ASCE)0733-9410(1987)113:6(637)
  8. Clancy, P. and Randolph, M. F. (1993), 'An Approximate Analysis Procedure of Piled Raft Foundations', Int. J. Numer. Anal. Meth. Geomech., Vol.17, pp.849-869 https://doi.org/10.1002/nag.1610171203
  9. Coyle, H. M. and Reese, L. C. (1966), 'Load Transfer for Axially Loaded Piles in Clay', Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No.SM2, pp.1-26
  10. Hoit, M. I., McVay, M., Hays, C., and Andrade, P. W. (1996), 'Nonlinear Pile Foundation Analysis using Florida-Pier', Journal of Bridge Engineering, Vol.1, No.4, pp.135-142 https://doi.org/10.1061/(ASCE)1084-0702(1996)1:4(135)
  11. Jeong, S. S. and Won, J. O. (2003), 'Simplified 3D Analysis of Laterally Loaded Pile Groups', TRB 2003 Annual Meeting CD-ROM
  12. Jeong, S. S., Chung S. H., and Won, J. O. (2001), 'Analysis of Group Pile-Cap Interaction by Load Transfer Approach', Journal of the Korean Geotechnical Society, Vol.17, No.3, pp.95-102
  13. Kitiyodom, P. and Matsumoto, T. (2002), 'A Simplified Analysis Method for Piled Raft and Pile Group Foundations with Batter Piles', Int. J. Numer. Anal. Meth. Geomech., Vol.26, pp.1349-1369 https://doi.org/10.1002/nag.248
  14. Matlock, H. and Reese, L. C. (1962), 'Generalized Solution for Laterally Loaded Piles', Transactions, ASCE, Vol.127, part I, pp.1220-1251
  15. McVay, M. C., Townsend, F. C., Bloomquist, D. G., O'Brien, M., and Caliendo, J. A. (1989), 'Numerical Analysis of Vertically Loaded Pile Groups', Proc. Found. Engrg.: Current Principles and Practices, Vol. 1, ASCE, New York, pp.675-690
  16. O'Neill, M. W. and Murchison, J. M. (1983), 'An Evaluation of p-y Relationship in Sands', A report to the American Petroleum Institute, PRAC 82-41-1. University of Houston, Texas
  17. O'Neill, M. W., Ghazzaly O. I., and Ha, H. B. (1977), 'Analysis of Three-Dimensional Pile Groups with Nonlinear Soil Response and Pile-soil-pile Interaction', 9th Annual Offihore Technology conference in Houston. Ex. May 2-5
  18. Reese, L. C. and Wang, S. T. (2004), 'Group 6.0 for Windows, Analysis of a Group of Piles Subjected to Axial and Lateral Loading', Ensoft, Inc., Austin, Tex
  19. Reese, L. C., O'Neill, M. W., and Smith, R. E. (1970), 'Generalized Analysis of Pile Foundations', Journal of Geotechnical Engineering, ASCE, Vol.96, No.SMl, pp.235-250
  20. Walsh, K., Houston, S. L., and Houston, W. N. (1995), 'Developement of t-z Curves For Cemented Fine-Grained Soil Deposits', Journal of Geotechnical Engineering, ASCE, Vol.121 , No.12, pp.886-895 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(886)
  21. Zhang, L., McValy, M. C., and Lai, P. (1999), 'Numerical Analysis of Laterally Loaded 3${\times}x3\;to\;7{\times}3$ Pile Groups in Sands', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.11, pp.936-946 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(936)
  22. Zhang, H. H. and Small, J. C. (2000), 'Analysis of Capped Pile Groups Subjected to Horizontal and Vertical Loads', Computers and Geotechnics, Vol.26, pp.1-21 https://doi.org/10.1016/S0266-352X(99)00029-4