DOI QR코드

DOI QR Code

Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete

고성능 하이브리드 섬유 보강 콘크리트의 휨 및 유동 특성

  • Published : 2005.08.01

Abstract

In the present work, modulus of rupture (MOR), flexural toughness properties $(I_{30}\;and\;W_{2.0})$ and workability (slump) of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber), and replaced with a fine mineral admixture such as silica fume (SF) are characterized through the analysis of variance (ANOVA). Data of MOR, $I_{30}(or W_{2.0})$ and slump are used as the characteristic values to estimate flexural performance and workable property of HPHFRC. Specially, an experimental design was Planned according to the fractional orthogoanl nay method to reduce experimental number of times. The experimental results show that steel fiber is a considerable significant factor in MOR and I30 $(W_{2.0})$. Based on the significance of experimental factors about each characteristic factors, the following evaluation can be used: Experiment factors which reduce slump most remarkably are carbon fiber, steel fiber, silica fume order.; Those that improve MOR most significantly are silica fume $({\fallingdotseq}\;carbon\;fiber)$, steel fiber order; Those that increase flexural toughness most distinctly are silica fume, carbon fiber, steel fiber order. It is obtained that the combination of steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$ is the experimental condition that improve MOR and flexural toughness excellently with workability ensured within the experiment.

본 연구에서는 마이크로 섬유인 탄소섬유와 매크로 섬유인 강섬유가 서로 하이브리드 형태로 결합되고 미세한 광물 혼화재인 실리카퓸이 치환된 고성능 하이브리드 섬유보강 콘크리트(HPHFRC)의 파괴계수(MOR), 휨인성 특성($I_30$$W_{2.0}$), 유동성(슬럼프)이 분산분석(ANOVA)을 통해 특성화된다. MOR I30(또는 $W_{2.0}$), 슬럼프 데이터들은 휨 성능과 유동성을 평가하기 위한 특성치로 사용된다. 특히, 실험회수를 줄이기 위하여 일부실시 직교배열에 따라 실험이 계획된다. 각 특성인자를 각 실험인자에 대해서 평가한 결과, 강섬유는 MOR 과 $I_{30}$의 특성인자 측면에서 상당히 유의한 실험인자로 나타난다. 또한 분산분석 결과, 실험인자의 유의도에 따라 다음과 같은 평가가 이용될 수 있다 유동성(슬럼프) 감소는 실리카 흄, 강섬유, 탄소섬유 실험인자 순서로 유의하게 나타난다. MOR 향상은 실리카퓸($\fallingdotseq$ 탄소섬유), 강섬유 실험인자 순서로 유의한 것으로 나타난다. 휨인성 증진은 실리카퓸, 탄소섬유, 강섬유 실험인자 순서로 유의하게 나타난다. 실험범위 내에서 강섬유 $1.0\%$, 탄소섬유 $0.25\%$, 실리카퓸 $5.0\%$의 조합이 각 특성치들을 가장 우수하게 향상시키고 유동성이 확보된 실험 조건으로 도출된다.

Keywords

References

  1. Qian,C. X. and Stroeven, P., 'Fracture Properties of Concrete Reinforced with Steel-Polypropylene Hybrid Fibres', Cement and Concrete Composites, Vol.22, No.5, 2000, pp.343-351 https://doi.org/10.1016/S0958-9465(00)00033-0
  2. Sun, W., Chen, H, Luo, X. and Qian, H, 'The Effect of Hybrid Fibers and Expansive Agent on the Shrinkage and Permeability of High-Performance Concrete', Cement and Concrete Research, Vol.31, No.4, 2001, pp.595-601 https://doi.org/10.1016/S0008-8846(00)00479-8
  3. Yao, W., Li, J. and Wu, K, 'Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction', Cement and Concrete Research, Vol.33, No.1, 2003, pp.27-30 https://doi.org/10.1016/S0008-8846(02)00913-4
  4. Banthia, N. and Sheng, J., 'Fracture Toughness of Micro-Fiber Reinforced Cement Composites', Cement and Concrete Composites, Vol.18, No.4, 1996, pp.251-269 https://doi.org/10.1016/0958-9465(95)00030-5
  5. Qian, C. X. and Stroeven, P., 'Development of Hybrid Polypropylene-Steel Fibre-Reinforced Concrete', Cement and Concrete Research, Vol.30, No.1, 2000, pp.63-69 https://doi.org/10.1016/S0008-8846(99)00202-1
  6. Jenning, H M, 'Advanced Cement-Based Matrices Composite', Proceedings cf the International Workshop 'High Performance Fiber reinforced cement composites', RILEM ACI, Stuttgart University and the University of Mchigan, Mainz, Germany, 1991, No.1, pp.3-17
  7. Banthia, N. and Sheng, J., 'Mcro-Reinforced Cementitious Materials', Materials Research Society Symposium Proceedings, Material Research Society, Boston, USA Vol.211, No.l, 1991, pp.25-32
  8. Bayasi, Z. and Peterson, G., 'Use of Small-Diameter Polypropylene Fibres in Cement-Based Materials', International Conference on Recent Developments in Fiber Reinforced Cement and Concrete, University of Wales College of Cardiff, UK, 1989, pp.200-208
  9. Li, V. C. and Maalej, M, 'Toughening in Cement Based Composites. Part I: Cement, Mortar, and Concrete', Cement and Concrete Composites, Vol.18, No.4, 1996, pp.223-237 https://doi.org/10.1016/0958-9465(95)00028-3
  10. Li, V. C. and Maalej, M, 'Toughening in Cement Based Composites. Part II: Fiber Reinforced Cementitious Composites', Cement and Concrete Composites, Vol.18, No.4, 1996, pp.239-249 https://doi.org/10.1016/0958-9465(95)00029-1
  11. Lin, W. L, 'Toughness Behaviour of Fiber Reinforced Concrete', Proceeding cf the Fourth International Symposium, RILEM Sheffield, UK, No.25, 1992, pp.299-315
  12. 박성현, 田口 방법을 중심으로 한 應用實驗計劃法, 英志文化社, 1995, pp.93-131
  13. Bentur, A and Mndess, S., Fiber Reinforced Cementitious Composites, Eelsevier Applied Science Publishers, London and New York, 1990, pp.344-358
  14. Mindess, S., Young, J. F. and Darwin, D., Concrete, Prentice Hall, New Jersey, 2003, pp.95-96
  15. Neville, A M, Properties of Concerete, Wiley, New York, 1996, pp.86-87
  16. Ghosh, S. N. and Yadav, S. N., Mineral Admixture in Cement and Concrete, ABI Books Private Limited, New Delhi, India, 1993, pp.226-265
  17. Banthia, N., 'A Study of Some Factors Affecting the Fiber-Matrix Bond in Steel Fiber Reinforced Concrete', Canadian Journal cf Civil Engineering, Vol.17, No.4, 1990, pp.610-620 https://doi.org/10.1139/l90-069
  18. Katz, A and Bentur, A, 'High Performance Fibres in High Strength Cementitious Matrices', Proceedings of the International Workshop 'High Performance Fiber reinforced cement composites', RILEM ACI, Stuttgart University and the University of Mchigan, Mainz, Germany, 1991, No.18, 1992, pp.237-247
  19. 원종필, 백철우, 박찬기, 한일영, 김방래, '구조용 합성 섬유의 형상 및 단면적 변화에 따른 부착 및 휨 성능', 콘크리트학회 논문집, 15권 5호 2003. 10, pp.643-649

Cited by

  1. Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs vol.28, pp.1, 2016, https://doi.org/10.4334/JKCI.2016.28.1.067
  2. Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.083