Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells

흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과

  • Kim Eun-Mi (Research Institute of Pharmaceutical Sciences, College of Pharmacy Ewha Womans University, National Institute of Scientific Investigation) ;
  • Choi Sinkyu (Research Institute of Pharmaceutical Sciences, College of Pharmacy Ewha Womans University) ;
  • Lee Kyunglim (Research Institute of Pharmaceutical Sciences, College of Pharmacy Ewha Womans University) ;
  • Kim Hwa-Jung (Research Institute of Pharmaceutical Sciences, College of Pharmacy Ewha Womans University)
  • 김은미 (이화여자대학교 약학대학, 국립과학수사연구소) ;
  • 최신규 (이화여자대학교 약학대학) ;
  • 이경림 (이화여자대학교 약학대학) ;
  • 김화정 (이화여자대학교 약학대학)
  • Published : 2005.08.01

Abstract

A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Keywords

References

  1. Gerlach, M., Riederer, P. and Youdim, M. B. H. : The molecular pharmacology of l-deprenyl. European Jounal of Pharmacology-Molecular Pharmacology Section 226, 97 (1992) https://doi.org/10.1016/0922-4106(92)90170-Z
  2. Carrillo, M. C., Kanai, S., Nokubo, M. and Kitani, K. : Deprenyl induced activities of both superoxide dismutase & catalase but not of glutathione peroxidase in the striatum of young male rat. Life Sci. 48, 517 (1991) https://doi.org/10.1016/0024-3205(91)90466-O
  3. Le, W., Jankovic, J., Xie, W., Kong, R. and Appel, S. H. : (-)-Deprenyl protection of l-methyl-4-phenylpyridium ion ($MPP^+$)-induced apoptosis independent of MAO-B inhibition. Neurosci. Let. 224, 197 (1997) https://doi.org/10.1016/S0304-3940(97)00170-5
  4. Gerlach, M., Youdim, M. B. H. and Riederer, P. : Is selegiline neuroprotective in Parkinson's disease? J. Neural Transm [suppl]. 41, 177 (1994).
  5. Cohen, G. : Oxidative Stress in Nervous System, In Sies, H.(ed.) : Oxidative stress. Academic Press, London 383 (1985)
  6. Olanow, C. and Arendash, G. : Metals and free radicals in neurodegeneration. Curr. Opin. Neurol. 7, 548 (1994) https://doi.org/10.1097/00019052-199412000-00013
  7. Oreland, L. : Monoamine oxidase, dopamine and Parkinson's disease. Acta. Neural. Scand. 84(Suppl 136), 60 (1991)
  8. Heikkila, R. and Cohen, G. : Futher syudies on the generation of hydrogen peroxide by 6-hydroxydopamine : Potentiation by ascorbic acid. Molecular Pharmacology 8, 241 (1972)
  9. Mochizuki, H., Goto, K., Mori, H. and Mizuno, Y. : Histochemical detection of apoptosis in Parkinson's disease. J. Neural. Sci. 137, 120 (1996) https://doi.org/10.1016/0022-510X(95)00336-Z
  10. Marti, M. J., James, C. J., Oo, T. F., Kelly, W. J. and Burke, R. E. : Early developmental destruction of terminals in the striatal target induce apoptosis in dopamine neurons of substantia nigra. J. Neurosci. 17, 2030 (1997)
  11. Walkinshaw, G. and Waters, C. M. : Neurotoxin induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience 63, 975 (1994) https://doi.org/10.1016/0306-4522(94)90566-5
  12. Ochu, E. E., Rothwell, N. J. and Waters, C. M. : Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J. Neurochem. 70, 2637 (1998) https://doi.org/10.1046/j.1471-4159.1998.70062637.x
  13. Simonian, N. A. and Coyle, J. T. : Oxidative stress in neurodegenerative disease. Annu. Rev. Pharmacol. Toxicol. 36, 83 (1996) https://doi.org/10.1146/annurev.pa.36.040196.000503
  14. Wu, R. M., Mohanakumar, K. P., Murphy, D. L. and Chiueh, C. C. : Antioxidant mechanism and protection of nigral neurons against $MPP^+$ toxicity by deprenyl (Selegiline). Annals New York Academy of Science. 738, 214 (1994) https://doi.org/10.1111/j.1749-6632.1994.tb21806.x
  15. Knoll, J. : The striatal dopamine dependency of life span in male rats, longevity study with (-) deprenyl. Mech. Aging Dev. 46, 237 (1988) https://doi.org/10.1016/0047-6374(88)90128-5
  16. Clow, A., Hussain, T., Glover, V., Sandler, M., Dexter, D. T. and Walker, M. : (-)-Deprenyl can induce soluble superoxide dismutase in rat striata. J. Neural Transm. [Gen Sect] 86, 77 (1991). https://doi.org/10.1007/BF01250378
  17. Cohen, G. and Spina, M. B. : Deprenyl supresses the oxidant stress associated with increased dopamine turnover. Ann. Neurol. 26, 689 (1989) https://doi.org/10.1002/ana.410260518
  18. Li, X. M., Juorio, A. V., Qi, J. and Boulton, A. A. : l-Deprenyl potentiates NGF-induced changes in superoxide dismutase mRNA in PC12 cells. J. Neurosci. Res. 53, 235 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980715)53:2<235::AID-JNR12>3.0.CO;2-5
  19. Maruyama, W. Takahashi, T. and Naoi, M. : (-)-Deprenyl protects human doparninergic neuroblastoma SH-SY5Y cells from apoptosis induced by perowynitrite and nitric oxide. J. Neurochem. 70, 2510 (1998) https://doi.org/10.1046/j.1471-4159.1998.70062510.x
  20. Rodriguez-Gomez, J. A., Venero, J. L., Vizuete, M. L., Cano, J. and Machado, A. : Deprenyl induces the tyrosine hydroxylase enzyme in rat dopaminergic nigrostriatal system. Molecular Brain Research 46, 31 (1997) https://doi.org/10.1016/S0169-328X(96)00270-7
  21. Tatton, W. G. and Chalmers-Redman, R. M. E. : Modulation of gene expression rather than monoamine oxidase inhibition : (-)-Deprenyl-related compounds in controlling neurodegeneration. Neurology 47(Supple 3), S171 (1996) https://doi.org/10.1212/WNL.47.6_Suppl_3.171S
  22. Breese, G. and Traylor, T. D. : Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons. J. Pharmcol. Exp. Ther. 174, 413 (1970)
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. : Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 (1951)
  24. Mosmann, T. : Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  25. Scarr, E., Wingerchuck, D. M., Juorio, A. V. and Paterson, I. A. : The effects of monoamine oxidase B inhibition on dopamine metabolism in rats with nigro-striatal lesions. Neurochem. Res. 19, 153 (1994) https://doi.org/10.1007/BF00966810
  26. Finberg, J. P. M., Wang, J., Goldstein, D. S., Kopin, I. J. and Bankiewics, K. S. : Influence of selective inhibition of monoamine oxidase A or B on striatal metabolism of L-DOPA in hemiparkinsonian rats. J. Neurochem. 65, 1213 (1995) https://doi.org/10.1046/j.1471-4159.1995.65031213.x
  27. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M. and Hyman, C. : Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl 4-phenylpyridinium ion toxicity: Involvement of glutathione system. J. Neurochem. 59, 99 (1992) https://doi.org/10.1111/j.1471-4159.1992.tb08880.x
  28. Blum, D., Wu, Y., Nissou, M. E, Benabid, A. L. and Verna, J. M. : p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Research 751, 139 (1997) https://doi.org/10.1016/S0006-8993(96)01358-3
  29. Zuo, D. and Yu, P. H. : Increase of survival of dopaminergic neuroblastoma in co-cultures with C-6 glioma by R-(-)depreny1. Progress in Brain Research 106, 199 (1995)
  30. Wu, R. M., Chiueh, C. C., Pert, A. and Murphy, D. L. : Apperent antioxidant effect of l-deprenyl on hydroxyl adical formation and nigral injury elicited by $MPP^+$ in vivo. European Journal of Pharmacology 243, 241 (1993) https://doi.org/10.1016/0014-2999(93)90181-G
  31. Maruyama, W, Naoi, M., Kasamatsu, T., Hashizume, Y., Takahashi, T., Kohda, K. and Dostert, P. An : Endogeneous dopaminergic neurotoxin, Nrnethyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J. Neurochem. 69, 322 (1997) https://doi.org/10.1046/j.1471-4159.1997.69010322.x
  32. Grimsby, J.. Toth, M., Chen, K., Kumazawa, T., Klaidman, L., Adams, J. D., Karoum, F., Gal, J. and Shih, J. C. : Increased stress response and ${\beta}$-phenylethylamine in MAO-B deficient mice. Nat. Genet. 17, 206 (1997) https://doi.org/10.1038/ng1097-206
  33. Lazebnik, Y. A., Kaufman, S. H., Desnoyers, S. Poirier, G. G. and Earnshaw, W. C. : Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346 (1994) https://doi.org/10.1038/371346a0
  34. Shimizu, S., Eguchi, Y., Kamiikie, W., Waguri, S., Uchiyama, Y., Matsuda, H. and Tsujimoto, Y. : Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12, 2045 (1996)
  35. Portera-Cailliau, C. and Hedreen, J. C., Price, D. L. and Koliatos, V. E. : Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775 (1995)
  36. Leist, M. and Nicotera, P. : Apoptosis, excitotoxicity and neuropathology. Experimental Cell Reasearch 239, 183 (1998) https://doi.org/10.1006/excr.1997.4026
  37. Kragten, E., Lalande, I., Zimmermann, K., Roggo, S., Schindler, P., Muller, D., Oostrum, J. V., Waldmeier, P. and Furst, P. : Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J. Biol. Chem. 273, 5821 (1998) https://doi.org/10.1074/jbc.273.10.5821