Identification of Three Competitive Inhibitors for Membrane­Associated, $Mg^{2+}-Dependent$ and Neutral 60 kDa Sphingomyelinase Activity

  • Kim Seok Kyun (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jung Sang Mi (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ahn Kyong Hoon (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jeon Hyung Jun (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Lee Dong Hun (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jung Kwang Mook (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jung Sung Yun (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Kim Dae Kyong (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
  • Published : 2005.08.01

Abstract

Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of $11.9 {\mu}g/mL,\;9.4{\mu}g/mL,\;and\;12.9{\mu}g/mL$, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.

Keywords

References

  1. Bernardo, K., Krut, O., Wiegmann, K., Kreder, D., Micheli, M., Schafer, R., Sickman, A., Schmidt, W. E., Schroder, J. M., Meyer, H. E., Sandhoff, K., and Kronke, M., Purification and characterization of a magnesium-dependent neutral sphingomyelinase from bovine brain. J. Biol. Chem., 275, 7641-7647 (2000) https://doi.org/10.1074/jbc.275.11.7641
  2. Bligh, E. G. and Dyer, W. J. A., Rapid method of total lipid extraction and purification. J. Can. J. Biochem. Biophysiol., 37, 911-917 (1959) https://doi.org/10.1139/o59-099
  3. Chatterjee, S., Neutral sphingomyelinase. Adv. Lipid Res., 26, 25-47 (1993)
  4. Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M., Obeid, L. M., and Hannun, Y. A., Role for Ceramide in Cell Cycle Arrest. J. Biol. Chem., 270, 2047- 2052 (1995) https://doi.org/10.1074/jbc.270.5.2047
  5. Strum, J. C., Small, G. W., Pauig, S. B., and Daniel, L. W., 1- beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J. Biol. Chem., 269, 15493-15497 (1994)
  6. Jung, S. Y., Suh, J. H., Park, H. J., Jung, K. M., Kim, M. Y., Na, D. S., and Kim, D. K., Identification of multiple forms of membrane-associated neutral sphingomyelinase in bovine brain. J. Neurochem., 75, 1004-1014 (2000) https://doi.org/10.1046/j.1471-4159.2000.0751004.x
  7. Liu, B., Hassler, D. F., Smith, G. K., Weaver, K., and Hannun, Y. A., Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain. J. Biol. Chem., 273, 34472-34479 (1998) https://doi.org/10.1074/jbc.273.51.34472
  8. Spence, M. W., Burgess, J. K., and Sperker, E. R., Neutral and acid sphingomyelinases: Somatotopographical distribution in human brain and distribution in rat organs. A possible relationship with the dopamine system. Brain Res., 168, 543- 545 (1979) https://doi.org/10.1016/0006-8993(79)90308-1
  9. Nara, F., Tanaka, M., Hosoya, T., Suzuki-Konagai, K., and Ogita, T., Scyphostatin, neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: taxonomy of the producing organism, fermentation, isolation, and physicochemical properties. J. Antibiot., 52, 525-530 (1999a) https://doi.org/10.7164/antibiotics.52.525
  10. Nara, F., Tanaka, M., Masuda-Inoue, S., Yamasato, Y., Doi- Yoshioka, H., Suzuki-Konagai, K., Kumakura, S., and Ogita, T., Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J. Antibiot., 52, 531-535 (1999b) https://doi.org/10.7164/antibiotics.52.531
  11. Nyberg, L., Duan, R. D., Axelson, J., and Nilsson, A., Identification of an alkaline sphingomyelinase activity in human bile. Biochim. Biophys. Acta, 1300, 42-48 (1996) https://doi.org/10.1016/0005-2760(95)00245-6
  12. Obid. L. M., Linardic, C. M., karolak, L. A., and Hannun, Y. A., Programmed cell death induced by ceramide. Science, 259, 1769-1771 (1993) https://doi.org/10.1126/science.8456305
  13. Okazaki, T., Bielawska, A., Bell, R. M., and Hannun, Y. A., Role of ceramide as a lipid mediator of 1,25-dihydroxyvitamin $D_3$- induced HL-60 cell differentiation. J. Biol. Chem., 265, 15823-15831 (1990)
  14. Okazaki, T., Bielawska, A., Domae, N., Bell, R. M., and Hannun, Y. A., Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1${\alpha}$,25-dihydroxyvitamine $D_3$-induced HL-60 cell differentiation. J. Biol. Chem., 269, 4070-4077 (1994)
  15. Quintern, L. E., Weitz, G., Nehrkorn, H., Tager, J. M., Schram, A. W., and Sandhoff, K., Acid sphingomyelinase from human urine: purification and characterization. Biochim. Biophys. Acta, 922, 323-336 (1987) https://doi.org/10.1016/0005-2760(87)90055-5
  16. Schiessel, S. L., Schuchman, E. H., Williams, K., J., and Tabas, I., $Zn^{2+}$Stimulated Sphingomyelinase Is Secreted by Many Cell Types and Is a Product of the Acid Sphingomyelinase Gene. J. Biol. Chem., 271, 18431-18436 (1996) https://doi.org/10.1074/jbc.271.31.18431
  17. Schutze, S., Potthof, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Kronke, M., TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced 'acidic' sphingomyelin breakdown. Cell, 71, 765-776 (1992) https://doi.org/10.1016/0092-8674(92)90553-O
  18. Segui, B., Bezombes, C., Uro-Coste, E., Medin, J. A., Andrieu- Abadie, N., Auge, N., Brouchet, A., Laurent, G., Salvayre, R., Jaffrezou, J. P., and Levade, T., Stress-induced apoptosis is not mediated by endolysosomal ceramide. FASEB J., 14, 36- 47 (2000) https://doi.org/10.1096/fasebj.14.1.36
  19. Spence, M. W., Sphingomyelinase. Adv. Lipid Res., 26, 3-23 (1993)
  20. Spence, M. W. and Burgess, J. K., Acid and neutral sphingomyelinase of rat brain. Activity in developing brain and regional distribution in adult brain. J. Neurochem., 30, 917-919 (1978) https://doi.org/10.1111/j.1471-4159.1978.tb10804.x
  21. Spence, M. W., Byers, D. M., Palmer, F. B., St, C., and Cook, H. W., A new $Zn^{2+}$Stimulated sphingomyelinase in fetal bovine serum. J. Biol. Chem., 264, 5358-5363 (1989)
  22. Yoshimura, S., Banno, Y., Nakanishi, Y., Takenaka, K., Sakai, H., Nishimura, Y., Sakai, N., Shimizu, S., Eguchi, Y., Tsujimoto Y., and Nozawa, Y., Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J. Biol. Chem., 273, 6921-6925 (1998) https://doi.org/10.1074/jbc.273.12.6921
  23. Tepper, C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R. A., Yonehara, S., Hannun, Y. A., and Seldin, M. F., Role for Ceramide as an Endogenous Mediator of Fas-Induced Cytotoxicity. Proc. Natl. Acad. Sci., 92, 8443-8447 (1995) https://doi.org/10.1073/pnas.92.18.8443
  24. Venable, M. E., Lee, J. Y., Smyth, M. J. Bielawska, A., and Obeid, L. M., Role of ceramide in cellular senescence. J. Biol. Chem., 270, 30701-30708 (1995) https://doi.org/10.1074/jbc.270.51.30701