Pathophysiological Implication of Ganglioside GM3 in Early Mouse Embryonic Development through Apoptosis

  • Ju Eun-Jin (Department of Biological Science, Wonkwang University) ;
  • Kwak Dong-Hoon (Department of Biological Science, Wonkwang University) ;
  • Lee Dae-Hoon (Department of Biological Science, Wonkwang University) ;
  • Kim Sung-Min (Department of Biological Science, Wonkwang University) ;
  • Kim Ji-Su (Department of Biological Science, Wonkwang University) ;
  • Kim Sun-Mi (Department of Biological Science, Wonkwang University) ;
  • Choi Han-Gil (Department of Biological Science, Wonkwang University) ;
  • Jung Kyu-Yong (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Lee Seo-ul (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Do Su-Il (Department of Life Science, Ajou University) ;
  • Park Young-Il (Department of Biotechnology, Catholic University) ;
  • Choo Young-Kug (Department of Biological Science, Wonkwang University)
  • Published : 2005.09.01

Abstract

Apoptosis may occur in early embryos where the execution of essential developmental events has failed, and gangliosides, sialic acid-conjugated glycosphingolipids, are proposed to regulate cell differentiation and growth. To evaluate the regulatory roles of ganglioside GM3 in early embryonic development, this study examined its expressional patterns in apoptotic cells during early embryonic development in mice. Pre-implanted embryos were obtained by in vitro fertilization, which were treated at the 4-cell stage with three the apoptosis inducers, actinomycin D, camptothecin and cycloheximide, for 15 h. All three inducers significantly increased the percentage of apoptotic cells, as measured using a TUNEL method, but remarkably reduced the total cell numbers. The numbers of morula and blastocyst stages were significantly decreased by treatment of the embryos with the three apoptosis inducers compared with the control, with a similar result also observed in the number of blastomeres. Staining of early embryos with Hoechst 33342 revealed a significant percentage of apoptotic nuclei. Prominent immunofluo­rescence microscopy revealed a significant difference in the ganglioside GM3 expression in apoptotic embryos compared with the control, and RT-PCR also demonstrated a dramatic increase in ganglioside GM3 synthase mRNA in the apoptotic embryos. These results suggest that ganglioside GM3 may be pathophysiologically implicated in the regulation of early embryonic development through an apoptotic mechanism.

Keywords

References

  1. Alexandre, S., Rast, C., Nguyen-Ba, G., and Vasseur, P., Detection of apoptosis induced by topoisomerase inhibitors and serum deprivation in Syrian hamster embryo cells. Exp. Cell Res., 255, 30–39 (2000) https://doi.org/10.1006/excr.1999.4759
  2. Betts, D. H. and King, W. A., Genetic regulation of embryo death and senescence. Theriogenology, 55, 171-191 (2001) https://doi.org/10.1016/S0093-691X(00)00453-2
  3. Bremer, E. G., Schlessinger, J., and Hakomori, S., Gangliosidemediated modulation of cell growth: specific effects of GM3 on tyrosine phophorylation of the epidermal growth factor receptor. J. Biol. Chem., 261, 2434-2440 (1986)
  4. Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J., Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil., 117, 97-105 (1999) https://doi.org/10.1530/jrf.0.1170097
  5. Calabrese, E. J., Apoptosis: biphasic dose responses. Crit. Rev. Toxicol., 31, 607-613 (2001) https://doi.org/10.1080/20014091111866
  6. Choo, Y. K., Distribution of gangliosides GM3 in the rat ovary after gonadotropin stimulation. Mol. Cells, 31, 365-375 (1999)
  7. Choo. Y. K., Chiba, K., Tai, T., Ogiso, M., and Hoshi, M., Differential distribution of gangliosides in adult rat ovary during the oestrous cycle. Glycobiology, 5, 299-309 (1995) https://doi.org/10.1093/glycob/5.3.299
  8. Fishman, P. H. and Brady, R. O., Biosynthesis and function of gangliosides. Science, 194, 906-915 (1976) https://doi.org/10.1126/science.185697
  9. Hakomori, S., Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochim., 50, 733-764 (1981) https://doi.org/10.1146/annurev.bi.50.070181.003505
  10. Hakomori, S., Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cell interaction. J. Biol. Chem., 265, 18713-18716 (1990)
  11. Hakomori, S., Yamamura, S., and Hanada, A K., Signal transduction through glyco (shingo) lipid introduction and resent studies on glyco (sphigo) lipid-enriched microdomains. Am. N. Y. Acad. Sci., 19, 1-10 (1998) https://doi.org/10.1111/j.1749-6632.1998.tb09657.x
  12. Hanada, K., Nishijima, M., Kiso, M., Hasegawa, A., Fujita, S., Ogawa, T., and Akamatsu, T., Sphingolipids are essential for the growth of Chinese hamster. J. Biol. Chem., 267, 23527-23533 (1992)
  13. Hardy, K., Cell death in the mammalian blastocyst. Mol. Hum. Reprod., 3, 919-925 (1997) https://doi.org/10.1093/molehr/3.10.919
  14. Hietanen, S., Lain, S., Krausz, E., Blattner, C., and Lane, D. P., Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. U.S.A., 97, 8501-8506 (2000) https://doi.org/10.1073/pnas.97.15.8501
  15. Iber, H., Zacharias, C., and Sandhoff, K., The c-series gangliosides GT3, GT2 and GP1c are formed in rat liver Golg. By the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides. Glycobiology, 2, 137-142 (1992) https://doi.org/10.1093/glycob/2.2.137
  16. Inoki, Y., Hakamata, Y., Hamamoto, T., Kinouchi, T., Yamazaki, S., Kagawa, Y., and Endo, H., Proteoliposomes colocalized with endogenous mitochondria in mouse fertilized egg. Biochem. Biophys. Res. Commun., 278, 183-191 (2000) https://doi.org/10.1006/bbrc.2000.3765
  17. Ji, M. Y., Lee, Y. C., Do, S. I., Nam, S. Y., Jung, K. Y., Kim, H. M., Park, J. K., and Choo, Y. K., Developmental patterns of mST3GalV mRNA expression in the mouse: In situ hybridization using DIG-labeled RNA probes. Arch. Pharm. Res., 23, 525-530 (2000) https://doi.org/10.1007/BF02976584
  18. Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., and Miyagi, T., Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. U.S.A., 99, 10718-10723 (2002) https://doi.org/10.1073/pnas.152597199
  19. Kawamura, S., Ohyama, C., Watanabe, R., Satoh, S., Hoshi, S., Gasa, S., and Orikasa, S., Glycolipid composition in bladder tumor: a crucial role of GM3 ganglioside in tumor invasion. Int. J. Cancer, 94, 343-347 (2001) https://doi.org/10.1002/ijc.1482
  20. Keefe, D. L., Franco, S., Liu, L., Trimarchi, J., Cao, B., Weitzen, S., Agarwal, S., and Blasco, M. A., Telomere length predicts embryo fragmentation after in vitro fertilization in womenToward a telomere theory of reproductive aging in women. Am. J. Obstet. Gynecol., 192, 1256-1260 (2005) https://doi.org/10.1016/j.ajog.2005.01.036
  21. Kim, B. H., Kim, C. H., Jung, K. Y., Jeon, B. H., Ju, E. J., and Choo, Y. K, Involvement of nitric oxide during in vitro fertilization and early embryonic development in mice. Arch. Pharm. Res., 27, 86-93 (2004) https://doi.org/10.1007/BF02980052
  22. Kotani, M., Ozawa, H., Kawashima, I., and Tai, T., Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides. Biochim. Biophys. Acta, 117, 97-103 (1992)
  23. Kubo, H. and Hoshi, M., Immunocytochemical study of the distribution of ganglioside in sea urchin eggs. J. Biochem., 108.193-199 (1990) https://doi.org/10.1093/oxfordjournals.jbchem.a123180
  24. Kwak, D. H., Jung, K. Y, Lee, Y. C., and Choo, Y. K., Expressional changes of ganglioside GM3 during ovarian maturation and early embryonic development in dbldb mice. Develop. Growth Differ., 45, 95-102 (2003) https://doi.org/10.1046/j.1440-169X.2003.00678.x
  25. Kwak, D. H., Rho, Y. I., Kwon, O. D., Ahn, S. H., Song, J. H., Choo, Y. K., Kim, S. J., Choi, B. K., and Jung, K. Y., Decrease of ganglioside GM3 in streptozotocin-induced diabetic glomeruli ofrats. Life Sci., 72, 1997-2006 (2003) https://doi.org/10.1016/S0024-3205(03)00090-0
  26. Matwee, C., Betts, D. H., and King, W. A., Apoptosis in the early bovine embryo. Zygote, 8, 57-68 (2000) https://doi.org/10.1017/S0967199400000836
  27. Moore, R. M., Lundgren, D. W., and Moore, J. J., Cyclooxygenase inhibitors decrease apoptosis initiated by actinomycin D, cycloheximide, and staurosporine in amnionderived WISH cells. J. Soc. Gynecol. Investig., 6, 245-251 (1999) https://doi.org/10.1016/S1071-5576(99)00030-1
  28. Morales, A., Colell, A., Mari, M., Garcia-Ruiz, C., and Femandez-Checa, J. C., Glycosphingolipids and mitochondria: Role in apoptosis and disease. Glycoconj. J., 20, 579-588 (2004) https://doi.org/10.1023/B:GLYC.0000043294.62504.2c
  29. Naora, H., Nishida, T., Shindo, Y., Adachi, M., and Naora, H., Constitutively enhanced nbl expression is associated with the induction of internucleosomal DNA cleavage by actinomycin D. Biochem. Biophys. Res. Commun., 224, 258-264 (1996) https://doi.org/10.1006/bbrc.1996.1017
  30. Nojiri, H., Takaku, F., Terui, Y., Miura, Y., and Saito, M., Ganglioside GM3; Acidic membrane component that increase during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines H2-60 and U937. Proc. Natl. Acad. Sci. U.S.A., 83, 782-786 (1986) https://doi.org/10.1073/pnas.83.3.782
  31. Ono, M., Handa, K., Withers, D. A., and Hakomori, S., Motility inhibition and apoptosis are induced by metastasissuppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res., 59, 2335-2339 (1999)
  32. Paller, A. S., Arnsmeier, S. L., Alvarez-Franco, M., and Bremer, E. G., Ganglioside GM3 inhibits the proliferation of cultured keratinocytes. J. Invest. Dermatol., 100, 841-845 (1993) https://doi.org/10.1111/1523-1747.ep12476755
  33. Perez, G. I., Tao, X., and Tilly, J. L., Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol. Hum. Reprod., 5, 414-420 (1999) https://doi.org/10.1093/molehr/5.5.414
  34. Shogomori, H., Chiba, K, Kubo, K, and Hoshi, M., Nonplasmalemmal localization of the major ganglioside in sea urchin eggs. Zygote, 1, 215-223 (1993) https://doi.org/10.1017/S0967199400001490
  35. Summers, M. C., Mcginnis, L. K., Lawitts, J. A., Raffin, M., and Biggers, J. D., IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum. Reprod., 15, 1791-1801 (2000) https://doi.org/10.1093/humrep/15.8.1791
  36. Svennerholm, L., Gongliosides and synapic transmission. In advances in experimental biology and medicine: Structure and function of gangliosides. Adv. Exp. Med. Biol., 125, 533-544 (1980)
  37. Varki, A, Biological roles of oligosaceharides: all of theories are correct. Glycobiology, 3,97-130 (1993) https://doi.org/10.1093/glycob/3.2.97
  38. Watanabe, R., Ohyama, C., Aoki, H., Takahashi, T., Satoh, M., Saito, S., Hoshi, S., Ishii, A, Saito, M., and Arai, Y, Ganglioside G(M3) overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res., 62, 3850-3854 (2002)
  39. Weil, M., Jacobson, M. D., Coles, H. S. R., Davies, J., Gardner, R. L., Raff, K. D., and Raff, M. C., Constitutive expression of the machinery for programmed cell death. J. Cell Biol., 133, 1053-1059 (1996) https://doi.org/10.1083/jcb.133.5.1053
  40. Yuan, Q., Ray, R. M., and Johnson, L. R., Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am. J. Physiol., 282, C1290-C1297 (2002) https://doi.org/10.1152/ajpcell.00351.2001