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ABSTRACT-This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using
measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of
increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a
Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and
accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer

signal is significantly biased.
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1. INTRODUCTION

An anti-lock braking system (ABS) controls wheels not
to lock during hard or emergency braking. This control
results in reducing braking distance as well as maintain-
ing steerability and stability of a vehicle. The techno-
logies of the ABS are also applied in traction control
systems (TCS) and vehicle dynamic stability control
(VDSC). The ABS uses longitudinal slip ratio s; at four
wheels of a vehicle, which are defined as:

ray—v

si= i=1,2,3,4 )
where v is the vehicle speed, ; is the the angular speed of
the wheels and #; is the radii of the tires. The ABS looks
for the large slips and high wheel accelerations associated
with impending lock-up and then lower the brake
pressure to prevent it.

The longitudinal slip ratio is related to longitudinal tire
force through tire models like the magic formula tire
model [2]. Figure 1 shows a plot of normalized longitu-
dinal tire force versus longitudinal slip ratio for traction
on several road surfaces, obtained using the magic
formula. A critical slip ratio is about 15 percent, where
maximum frictions are obtained. The slip curve shows
that the tire force is typically an increasing function of
slip ratio until the critical slip ratio. After this critical slip
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ratio, more slip leads to a decrease in tire force and wheel
lock-up. Control algorithms of the ABS are designed to
use the slip curve concept and thus, require precise
calculation of the slip ratio in equation (1). For perfor-
mance of the ABS, it is essential to measure the vehicle
and the wheel speeds precisely.

According to some research results, it may even be
possible to estimate tire/road coefficient of friction using
slip information. Several researchers (Dieckmann, 1992;
Gustafsson, 1997; Yi et al., 1999; Hedrick and Uchanski,
2001; Uchanski, 2001; Miiller et al., 2002) have demon-
strated that there may be potential for a slip-based
estimator of the maximum tire/road coefficient of
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Figure 1. Simulated slip curves on several surfaces.
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friction, p4,.. A slip-based 4, estimator attempts to use
low slip and low tire force data from normal driving to
determine the maximum amount of friction that is
available to the driver. It therefore demands precise speed
estimation and slip calculation. Although this is possible
for two wheel drive vehicles in traction using standard
wheel sensors (Dieckmann, 1992), it is not yet possible
for braking vehicles without a ground reference speed
Sensor.

Strategies to estimate vehicle speed fall into two main
categories: ground reference techniques and non-ground
reference techniques. Ground reference techniques tend
to be more accurate, but they also tend to be more
expensive than non-ground reference techniques. Some
of them include an optical cross-correlation sensor, a
radar sensor, a global positioning system (GPS) (Miller ef
al., 2001; Bevly et al, 2001), and a 5" wheel sensor
which uses a bicycle-like wheel mounted from a spring
loaded arm on the back of the car (Figure 2). Because the
wheel does not slip and its radius is well known, the 5"
wheel sensor can measure the vehicle speed accurately
(Oh and Song, 2002; Song, Hwang and Hedrick, 2002).

A wheel sensor is a frequently used non-ground
sensor, where the vehicle speed is measured by multi-
plying the wheel angular speed by the effective tire
radius. Recently, an accelerometer is introduced to
estimate the vehicle speed more accurately. The accelero-
meter has some merits such as small size, low cost, and
easy implementation. Several technologies of vehicle
speed estimation were developed using Kalman filters
(Kobayashi et al., 1995) or fuzzy logic (Daiss and
Kiencke, 1995; Basset ef al., 1997) to combine accelero-
meters and whee! sensors.

In this paper, a standard 50 tooth wheel sensor and a
longitudinal accelerometer are used to get a high
* precision estimate of the longitudinal vehicle speed. We
have chosen to develop the algorithms using wheel speed
data only from the left front wheel. This is because it is
possible to see a direct relationship between the behavior
of the one wheel and the speed estimate. All results in the

paper are calculated using experimental data from
straight-line braking maneuvers using a rear wheel drive
test vehicle. In addition to the accelerometer-and wheel
sensor, the vehicle is outfitted with a fifth wheel to
provide a ground speed reference.

The obvious intuitive solution to the one wheel sensor
estimation problem is: When tire slip is low, calculate
vehicle speed using the wheel speed sensor; when tire
slip is high, calculate it by integrating the accelerometer
signal. Three speed estimation methods are presented on
the basis of this strategy, but differ in how they
implement it. The first method described in Section 2 is
introduced as a basic algorithm to combined measure-
ment data from a wheel sensor and an accelerometer. The
second method, which is developed in Section 3, uses a
Kalman filtering concept to reduce measurement noise.
The final method, which is proposed in Section 4, uses
regression to simultaneously identify the effective tire
radius and the accelerometer bias, and it 1s found to
deliver very good speed estimates, even in the presence
of parameter changes.

2. BASIC ESTIMATION OF THE VEHICLE
SPEED

Since the wheel speed signal is from the front wheel of a
rear wheel drive car, its slip is negligible whenever the
car is not braking. Therefore, when the car is not braking,
which can be easily detected using the existing brake
light circuit, we calculate the basic speed estimate at time
step k as V. {k) = r..,- k), where r,,, is the estimate of the
effective tire radius, and (k) is the angular speed of the
wheel. When the brakes are activated, we get the basic
speed estimate at time step & by numerically integrating
the accelerometer according to

k
Voasic(k) = Voasic(Kno brake) + Z

i=k

no_brake

Ameas(E) - At @

where k., srare 18 the last time index at which there is no
braking, d,..,(i) is the acceleration measurement, and Az
is the sample time interval.

Figure 3 shows the performance of this basic vehicle
speed estimation algorithm. The maneuver was a straight
line acceleration for approximately 5 seconds followed
by braking of increasing intensity until the wheels locked
at approximately 8 seconds. The true speed of the vehicle
from the 5" wheel is shown by the thick gray line, and the
speed of the braking wheel is shown by the thick line that
drops abruptly to 0 m/s at approximately 8 s.

In the case when the accelerometer has no bias of
0 m/s’, the estimate of the basic algorithm is quite good.
However, the accelerometer bias of 0.5 m/s* makes the
basic speed estimate unacceptable. Percent speed esti-
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Figure 3. Speeds estimated form the basic estimator.
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Figure 4. Errors of speeds estimated from the basic
estimator.

mation errors are plotted in figure 4. The percent speed
estimation error with no bias is less than 2 percent for the
majority of the maneuver and only reaches a peak value
of 4 percent when the wheel is locked. Note that low
vehicle speed makes it easier for small absolute errors to
translate to large percent errors. When the accelerometer
is biased by 0.5 m/s’, the vehicle speed estimate starts to
diverge from the actual speed during braking after
approximately 6 seconds. It quickly diverges to errors of
10 percent or more, rendering the basic speed estimate
inutile for most uses.

Unfortunately, biases do occur quite frequently in
acceleration measurements, so the basic estimator’s lack
of robustness to them is a serious difficulty. Some sources
of longitudinal accelerometer bias include road slope,
temporary pitch angle changes resulting from longitu-
dinal accelerations, and longer-term pitch angle changes
due to vehicle loading, active/semi-active suspension
behavior, and suspension aging. Of these factors, road
slope (Daiss and Kiencke, 1995) is typically the most

important. The 0.5 m/s’ accelerometer bias used here
simulates the effect of a grade of 6 percent, which
occasionally occurs on even the highest quality roads.
Similarly, this basic estimation algorithm is not robust
to errors and changes in the dynamic tire radius. It is
straightforward to show that during non-braking phases,
the percent error in the basic speed estimate is equal to

Ve — T
= x 100 3)

where r is the true effective tire radius, and r,, is the
estimate of the effective tire radius used in the basic
estimator. Thus, a two percent error in the effective tire
radius estimate results in a constant two percent error in
the speed estimate. Fortunately, the effective tire radius
tends to change very little and very slowly under most
circumstances.

A final difficulty with this basic estimation algorithm
is that the noise of the wheel speed measurement passes
directly through to the speed estimate during non-braking
phases. This can be seen in Figure 3 as high frequency
noise on the percent error for times less than six seconds.
This is not a serious problem in these particular tests
because the wheel speed noise is reasonably small.
However, it warrants attention for two reasons. First, it is
a problem that grows directly with the sensor noise level,
so it could become a problem when the sensor noise level
is high. Second, it is a problem that can be remedied by
utilizing redundant sensor information and standard
theoretical techniques.

3. SPEED ESTIMATION BASED ON
KALMAN FILTER

A standard technique that is sometimes used for fusing
imperfect measurements and system models to make less
noisy is the Kalman filter (Anderson and Moore, 1979;
Hayes, 1996). It is used in circumstances similar to ours
in Daiss and Kiencke (1995) and Kobayashi, Cheok and
Watanabe (1995). To attenuate the wheel sensor noise,
we apply Kalman filtering concept to redundant
information to obtain from the two different sensors of
the wheel sensor and the accelerometer.

We model the vehicle as a difference equation that
performs a discrete integration of the measured vehicle
acceleration g,,,(k) plus a noise term w(k) to arrive at the
true vehicle speed, v(k). That is,

v(k) =v(k—1)+ At - apea(k) + w(k) 4)

At each sample interval, we have a noisy measurement
(k) of the wheel speed, which is formed from v(k) and
the estimated effective radius r, according to the
measurement equation.
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(k) = Ur,, - v(k) + n(k) 5)

If the noise processes w(k) and n(k) were white, then
the least squares optimal estimate of v(k) given the
measurement of @(k) and all of its predecessors would
take the form: :

kY= K - 1oy - (k) + (1 = KYO(k— 1) + AL - Qe (K))
(6)

where v(k) is the optimal estimate and K is a specially
chosen gain called the Kalman gain. Of course, the noise
in our situation 1s not white, but this same general form
taken from Kalman filtering theory still provides vehicle
speed estimates that tend to be better than the estimates
obtained using just the accelerometer or just the wheel
speed measurement.

The speed estimator of equation (6) is a more general
case of the basic estimator of the previous section. For the
basic estimator, K is either 0 for braking or 1 for not
braking. Therefore, K can be determined by the slip ratio
and plays a role as a weighting parameter. For this reason,
we refer to this speed estimator as a Kalman filter-like
speed estimator. Following the intuition of the basic
estimation algorithm, K should not be the same under all
circumstances. When the wheel slip is negligible, it
should be closer to one, while it should be closer to zero
when braking hard. We make K vary between 0.09 when
the wheel slip is low to 0.0 when the wheel slip is high.
Figure 5 shows K according to slip ratio s(k), which is
calculated using the current wheel speed and the previous
vehicle speed estimate.

s(hy = L@ = V= D) 16004 %
v(k—-1)

Figure 6 shows speed estimation results of the Kalman

filter-hike estimator. The maneuver is the same straight

line maneuver as that of Figure 3 of the previous section.
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Figure 5. Weighting parameter K according to slip.
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Figure 7. Errors of speeds estimated from the Kalman

filter like estimator.

The 5" wheel signal gives the true speed reference, and
the signal that drops to zero is the wheel speed signal
multiplied by the effective radius estimate 7. When the
accelerometer has no bias, the Kalman filter-like esti-
mation algorithm gives results with very little noise and
good accuracy. As Figure 7 shows, the speed estimation
error remains less than 2 percent for almost the entire
maneuver. However, when an accelerometer bias of 0.5
m/s? is introduced, this algorithm, which relies heavily on
the accelerometer measurement, gives large errors as
shown in Figure 6 and Figure 7. When more weight was
assigned to the wheel speed signal, the results were
subjectively the same as those shown here.

4. SPEED ESTIMATION WITH BIAS AND
RADIUS CORRECTOR

In the experimental results of the previous section, the
Kalman filter-like estimator can successfully attenuate
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noise, but it heavily depends on the accelerometer bias.
Furthermore, the algorithm still relies on an accurate
estimate of the effective tire radius r,,. To correct these
problems, this section adds a parameter estimator to the
Kalman filter-like estimator. The parameter estimator
calculates the effective wheel radius » and the accelero-
meter bias (k) defined as

&(k) = Apeas(k) — a(k) . ®

The two measurements available to aid in the para-
meter estimation are the wheel speed w(k) and the
measured acceleration a,,.(k). Whenever there is no slip
at the wheel, we can relate the unknown parameters to
known quantities by the regression equation

. 1/¥

k = eas k - .

o) = lana® =11 ] ©
where @(k) is the numerical derivative of

(a(k) — w(k-1))/At.

We can solve for the parameters &/r and 1/r using
either the standard least squares formula, recursive least
squares, or a Kalman filter. The first two techniques have
the advantage that they give least squares optimal
solutions. However, the Kalman filter has the advantage
that it allows one to track time varying parameters and to
incorporate a prior knowledge of their relative volatility.
In this particular problem, the parameters are time
varying, and we understand their behavior fairly well.
The radius r tends to change very little and very slowly,
while the bias & can change by much larger amounts in
fairly short periods of time, which of an example is when
the traveling vehicle encounters a hill. Therefore, we use
a Kalman filter to solve the regression problem.

Similar to Gustafsson (1997), who discusses the use of
Kalman filters to solve regression problems in more
detail, we assume the parameters evolve according to the
difference equation

1 i
CIEGRY

By | | E-1) [ }

wo(k)

where w (k) and wy(k) are white noise processes that
cause the otherwise constant parameters to change. We
have a noisy measurement @(%) that is formed from the
true parameters according to

(k) = [ameas®) 1] [1/ r]+n(k) (11)
\—_—P-__/C(k) el'r

where n(k) is the measurement noise, which is substantial
due to the numerical differentiation. The Kalman filter

takes the form

1 1 1

iy [2k-1) Lk-1)

eI + K| (0 - CR)| |

& & &

| | 21y £(k-1)
(12)

where the hats denote estimates, and where K., is a time
varying gain matrix gotten from the standard Kalman
filter formulation (Hayes, 1996). To reflect the fact that
the differentiated angular speed extremely noisy and that
the accelerometer bias is far more volatile than the tire
radius, the covariance of n(k) associated with the
measurement is chosen to be very large compared to
those of w,(k) and w,(k). And the covariance of w(k) is
chosen to be still smaller than that of wy(k).

To ensure that the parameters &/r and 1/ are only
estimated when there is negligible slip at the wheel, their
estimation is frozen when the slip surpasses a threshold
value of +/-2 percent. Whenever the estimation is frozen,
the parameters are set to their mean value over the past 2
seconds. The Kalman filter-like estimator of equation (6)
is then used in the previous section, but wherever a,,.(k)
is used, it is replaced by a,,..,(k) — &(k) and wherever 7,
is used, it is replaced by (k).

Figure 8 and Figure 9 show the speed estimation
results from combining the parameter estimator and the
Kalman filter-like estimator. In case of no accelerometer
bias, the error is less than 2 percent for most of the test,
and the high frequency noise in the estimate is attenuated.
These results are comparable with the no-bias results
from the previous two methods. This indicates that
parameter estimation do not degrade the speed estimation
performance. Even when the accelerometer bias is
0.5 m/s’, the speed estimate is very close to the 5" wheel
speed and there is only a very minor degradation in
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Figure 8. Speeds estimated with radius and bias
correction.
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Figure 11. Bias estimates of the accelerometer.

performance, whereas there was a major breakdown in
performance for the two previous algorithms. Peak error
remains less than 3 percent for the duration of the test.

The estimation results of the effective radius and

accelerometer bias are shown in Figure 10 and Figure 11,
respectively.

The tire radius estimates are near 0.33 regardless of the
two accelerometer biases and make very small scale
excursions from their starting values. In both case the
accelerometer bias estimate is close to the correct value,
but slightly high. This is consistent either with a slight
positive underlying accelerometer bias that was not
adjusted out before the tests.

5. CONCLUSION

We developed the high precision speed estimator based
on the Kalman filter: The developed estimator evolved
out of the basic estimator, which of strategy is that during
low slip the vehicle speed is calculated using the wheel
speed sensor and during high slip it is calculated by
integrating the accelerometer signal. We analyzed the
experimental results of the basic estimator, which showed
that the vehicle speed estimates were affected by the
accelerometer bias, the wheel sensor noise, and error of
the tire radius. The Kalman filter-like estimator was
proposed for reduction of the wheel sensor noise. In
addition, we applied the Kalman filter to estimation of
the accelerometer bias and the tire radius.- The
performance of the developed estimator was evaluated
trough the experiment with the severe accelerometer bias,
where the peak estimation errors less than the order of 3
percent.

Most vehicles offer four wheel speeds for a speed
estimation algorithm to use. In practical applications, the
vehicle speed can be estimated more accurately. This is
because of the flexibility to choose the wheel sensor with
the least slip. However, when all four wheels are slipping,
the basic difficulty of this paper may put a limit on the
precision level that is available with just an accelerometer
and wheel sensors.
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