International Journal of Automotive Technology, Vol. 6, No. 5, pp. 545-554 (2005)

Copyright © 2005 KSAE

1229-9138/2005/023-15

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF

MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM

AUGMENTATION

J. H. SUH" and K. S. LEE"
"Department of Electrical Engineering, Dong-A University, Busan 604-714, Korea
(Received 18 May 2004; Revised 23 April 2005)

ABSTRACT-Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the
motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the
supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed
control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also
analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3-
wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid
object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of
augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems.
Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to
trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm
proposed in this research.

KEY WORDS : Decentralized control, Passive velocity field control (PVFC), Augmented system, Minor loop
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1. INTRODUCTION

The manipulation task of a mechanical system is
traditionally specified by means of a desired time
trajectory in the workspace. The control objective is to
track this trajectory at every instant of time. Moreover, in
the context of machining, the system has to interact
closely with its physical environment. When the contour
following task is represented by a velocity field on the
configuration manifold of the system, the coordination
aspect of the problem is made explicit. Therefore, the
passive velocity field control (PVFC) scheme can then be
applied to track the defined velocity field so that the
desired contour is followed, and to ensure that the
interaction of the closed-loop system with the physical
environment is passive to enhance safety and stability (Li
et al., 1999 and 2001).

However, the PVFC algorithm applied to a single
manipulator could not extend to multiple robotic systems.
Especially, multiple robotic systems can execute various
tasks which could not be done by a single manipulator
such as the handling of a heavy object, for example,

*Corresponding author. e-mail: kslee@dau.ac kr

545

transportation of port containers using cooperative AGV
systems. Therefore, many control algorithms have been
proposed for the coordinated motion control of multiple
robot systems. That is, the typical algorithms for multiple
robotic systems may be summarized as follows: 1)
centralized control algorithm; and ii) decentralized control
algorithm. Moreover, various decentralized control algo-
rithms have been proposed to overcome some problems
of the centralized control algorithm in which each robot
system is controlled by its own controller without explicit
communication among cooperative systems.

In our previous research (Yamakita ef al., 1998), the
decentralized implementation of PVFC including internal
force control was proposed in a case where an object is
rigidly grasped by multiple manipulators. In this paper,
we propose a method to apply an original PVFC with
some modification to cooperative mobile robotic systems
which consist of two planar mobile robots which convey
a common rigid object attached to mobile robots with
passive rotational joints in a horizontal plain. Each
mobile robot is a 3-wheeled mobile robot and is under
nonholonomic constraints. The specifications of propos-
ed controller are as follows:
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(1) The center of the object follows a desired velocity -

field without external disturbances;

(2) The orientation of the object tracks a desired value
specified in terms of the position of center of an
object;

(3) Linear motion of an object has properties of a system
controlled by an original PVFC;

(4) Internal force is controlled in a certain direction.

Moreover, it is shown that multiple robot systems ensure
stability and the velocities of augmented systems
converge to a scaled multiple of each desired velocity
field for cooperative mobile robot systems. In this paper,
we will focus on how to realize the specification above
by decentralized PVFC controller though a centralized
PVFC.

2. REVIEW OF PASSIVE VELOCITY FIELD
CONTROL (PVFC)

Passive velocity field control (PVFC) had been proposed
by Li and the geometry of controlled systems is analyzed
(Li, 1999). The methodology encoded tasks using time
invariant desired velocity fields instead of the more
traditional method. In this section, we briefly review and
summarize the design procedure for and properties of an
original PVFC.

We consider a n degree of freedom (DOF) fully
actuated mechanical system with configuration space
subjected to both control forces 7 and environment forces
F.. Its dynamics can be expressed geometrically in terms
of coordinates as follows:

M(q)q+C(q,9)q=T+F. 1)

where M(q) and C(gq,q) are the inertia matrix and
Coriolis matrix in coordinates, respectively.

The desired velocity field defines a tangent vector at
every point of the configuration space, the design
methodology will be presented in the following three
steps. First, defining an augmented system as a product
system with configuration space between plant and a
fictitious flywheel system M;,g,..=T5, as follows:

[M(‘J) 0} q +[C(q,é) 0] q =[T}+[F{| @)
0 M Gt 0 0] g T, 0

For the simplicity,
M (4)9:+C(quqa)g=T"+F, €),
where ¢, = [q ¢.-1]" is the configuration and M is the

inertia Riemannian matrix for augmented system. Also,
M defines the kinetic energy of the augmented system

via:
. Lo 1. .
Kl 4)=<<G0rd>>01=54uM (404 @

where <<-,->>, denotes the inner product defined by the
inertia metric M. In the following, the system is referred
to an augmented system and the terms are suffixed with
a. Tt should be noted that the degree of freedom of
Equation (3) is increased from # to n+1, and its additional
freedom can be considered to be a flywheel which stores
and discharges the energy.

Secondly, defining an augmented desired velocity field
of the form; V(q)=[V(q) V"'(¢"")], such that the
kinetic energy of the augmented system is constant as
follows:

W(P=3VMVSE ®)

Therefore a coupling control law 7° in eq. (3) of the
form:

| . .
T = 3E=(AQT -0AYg, +r(Op" - PO )¢
%,—/

R 6
=G(q4+4a) ata) ©

=G(44:92)90 + R(94:90)4

where A=M‘V,+C°V, is the momentum associated with
covariant derivative of desired velocity with respect to an
actual velocity for system, p=M"q, and Q=M"V, are
momentum and desired momentum of an augmented
system, respectively. y € R is gain which is a control
constant coefficient. Also, G(q.,q.) and R(q.,q,) are
skew-symmetric matrices and depend on the augmented
velocity field V,(q,).

To these ends, the formulation of PVFC has two
distinct features as follows:

(1) The task is encoded desired behavior of the
mechanical system is specified in terms of velocity
field defined on the configuration manifold of the
system;

(2) The mechanical system under closed-loop control
appears to be an energetically passive system to its
physical environments.

Note that the mechanical system is not required to be at a
particular position at each time. Instead, the velocity field
guides the robot to approach the contour in a well
behaved manner. Moreover, the motivations for develop-
ing PVFC were to tackle robotic applications that
required; i) intimate interaction between the machine and
uncertain physical environments and ii) the coordination
between the various DOF of the machine for the task to
be accomplished. The readers are referred to the
companion papers (Li, 1999 and 2001) for details.
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Figure 1. Configuration of a 3-wheeled mobile robot.

3. MULTIPLE 3-WHEELED MOBILE ROBOTS

A wheeled mobile robot (WMR) is a wheeled vehicle
which is capable of an autonomous motion without
external human driver because it is equipped with motors
driven by an embarked computer for its motion such as
automated guided vehicle (AGV). We assume that the
WMR are made up of a rigid frame equipped with non-
deformable wheels and that they are moving on a
horizontal plane.

3.1. Description of a 3-Wheeled Mobile Robots

In this section, we consider a 3-wheeled mobile robot
with two conventional fixed wheels on the same axle and
one conventional off-centered orientable wheel as shown
in Figure 1. The two conventional fixed wheels ((D and
@) have a fixed orientation while the orientation of
wheel 3 is varying.

According to these descriptions, the geometry of the
wheels is completely described by the following class; {r,
I, d, a, B, ¢; i=1, 2, 3}. where the length from the
center point P to the center of each wheel is denoted by /,
the radius of each wheel is defined by r, and the position
of a point 4 with respect to the trolley is specified by the
length / and the angle a. Also, the center of the wheel &
is connected to the trolley by a rigid rod d (constant) and
the rotation angle of this rod is denoted by angle £. The
rotation angle of the wheels around their horizontal axis
are denoted by ¢(i=1, 2, 3). Therefore, the position of
the wheel is characterized by a set of four constants {r, /,
d, a}, and its motion by 2 varying angles 4(¢) and ¢,(¢).
Moreover if the rod of wheel 3 is fixed, then the angle 4
becomes obviously a constant (D’Andrea-Novel, 1991).

In Figure 1, we know the vector & to indicate the
motion of robot body:

&=(xy o) Q)

Furthermore, we can introduce the generalized coordi-
nate vector to describe the whole motion of robot as
follows:

qO=(xy 6 B o ¢ 4) ®)

Using the generalized coordinate vector in Equation
(8) and the kinematical constraints by the following
constraints; i) pure rolling condition and ii) non-slipping
condition, we can also represented the dynamic equation
of a 3-wheeled mobile robot by

HA (DHB.5)=G(B) s (€)

And it is easily shown that these constraints are
nonholomic constraints for the system since two vector
fields which satisfy the conditions are not involutive
(Compion et al., 1996).

If we assume some conditions and use the following
coordinate change

£=—xsin G+ycos 6
=0 (10)

and input transformation, we can obtain the simplified
dynamic equation as follows:

@ ¢

] &

5 —£8in 8

B . g“llcosﬁ (a1
B —6—14 31n,8—5,§2(d+ Icos )

évl Vi

where v=(v, vz)T is a new input, and the constraints are
also represented by (Yamakita, 2000):

xcos G+ysin 6=0
—xsin G+ycos =<, (12)
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Figure 2. Configuration of cooperative 3-WMRs.
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3.2. Cooperative 3-Wheeled Mobile Robots

We consider a case where two WMRs convey a rod for
simplicity, however, the similar discussion can be applied
for cases where more mobile robots is carrying a general
planer rigid object. In this section, we describe the
configuration of cooperative 3-WMRs as shown in
Figure 2 In considered robot systems, an object denoted
by a rod is connected to each mobile robot by a free joint
without friction and the length of an object is 2L.

If we assume that mass and inertia of an object are m
and 7, and a position of the mass center and rotational
angle of an object from O-I; in counterclockwise
direction are (x,, y.) and ¢, then we have free dynamic
equations of an object as follows:

M5,=0, I,p=0 (13)

where

M= 0 = ) (14)
0 m

On the other hand, since the dynamic equation for two 3-
WMRs can be described by the previous section, an
augmented dynamic equation is represented as follows:

H (B) n (+F (B,n)=G (1) (15)

where
0 ) 4D

oo Gi(f 0 T
T TP G 0py ) O )

m=(& &), m(H=(& &),
n():=(m m)

Moreover, ;e R, (i=1, 2, 3, 4) is also defined in the
previous section, i.e., each subscript number indicates a
number of mobile robot except for ;. As £, disappear
alone in the following, we note that there should be no
confusion.

Using the dynamic equations of an object and each
mobile robot, the whole dynamic system without
constraint introduced by passive joints can be represented
as follows:

M x,+F.=Gu (16)
where

H () 01,2 0 F'(B.1)
M= 0,., M 0| F.~= 0 ,

le4 01)(2 Io 0

G,=(G" 0 O)T, x=(m 7 X, ¢)T

From the kinematic constraints by the passive joints, the
holonomic constraints between the generalized coordi-
nates are defined as follows:

(i)z(xl—hsinﬁl):(xc—Lcosw an

yy yithcos8/ \y.+Lsin

_ (J_Cz :(xz—hsinﬁz z(xc-i-Lcosg/)) (18)
y/ \yathcos@/ \y—Lsing

Then, since these equations can also be rewritten using
the differential of Equations (17), (18) and 7,(¢), (i=1,
2), we can simply represent above equations as matrix
form

() [0Ox
Jio 00 Ul(t) OZl
. ) 2x1 :
To ol 17l (19
Ozx2 J2 'o 2x1
i) 0
=J,
where
—sin@. —hcos 6, T
g S0 heosO ) gy,
cosO —hsind, (“laxz ~F2.2)

J,=(~Lsing —Lcosg Lsing Lcosp)’

Then, the actual dynamic equation for whole systems can
be represented as follows:

M, %, +F,=Gu-J,A (20)

where A4 is a constraint force vector defined by

A=(4 L) 21
A=A lmz)T and A,=(4,; /1m4)T (22)

If we define the constraint force as above equations,
the actual dynamic equation of whole system can be
decomposed into the following equations using Equation
(20)

H,(ﬂ;) 77(t)+ﬁ(ﬂu 1)=G:(5) Tmi_JiT/li (23)
Mx,=~JoA, I,p=—J A (24)

3.3. Minor Loop Compensation Scheme

Since we assume that the constraint forces, 4, (i=1, 2)
in Equation (22) are observed by each force sensor in our
control method, then we can define a local control input,
7. (=1, 2) given by

Tmi= Gi_l (Hivi“"fi"*’JiT/L)_G;lHiJ,T/?vi 25)
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where v; (i =1, 2) is new input. If we inject new control
input v; into cooperative mobile robots, then the closed
loop system becomes

n{(H=vi(t)~Ji A (i=1,2) (26)

Therefore the actual dynamic equation of whole system
is represented by

M x,=Gv()-J, A 27N
where
[2><2 12x2 02><2
M= L., E; - 02x2 L.,
W MO bl w 02x4 b
10 0l x 4
v=(v,; v, 0 0)'

Note that the minor loop compensation is not necessary
for the design of passive velocity field control, however
the computation for PVFC would become very complex.
Since the dynamic equation is transformed by a
coordinate transformation and input change in advance so
that the dynamic system of ¢ disappear in the equation,

therefore the control input for ¢ is realized as an internal

force for the mqtion of x,.
Let’s define Xx; as follows:

x=In(® (=1, 2) (28)

Then, using the new coordinate X;, the actual dynamic
equation of 3-wheeled mobile robots given by Equation
(27) can be rewritten by

Ji_lj‘—‘;i_‘]i_ JIT% =y = d] 4 (1=1,2) 29)
Therefore, the actual dynamic equation of whole system
can be represented as follows:

J! X)) (=J7UJ7
J;! X . - J;'JJ5'%,
M, X, 0,
L@ 0 (30)
Vi J]T 020 Y At
" 05,2 JzT -
0y, | gy -
0 J, s

Substituting 3?, defined by Equation (28) into Equation
(19) and Defining the matrix J, as follows:

il
J, = (€23

Then, pre-multiplying a matrix defined by Equation (31)
in Equation (30), we can describe new dynamic equation
of whole system as follows:

g %) (=TI,
J;Ta3 b B el s Y A
M, %, 0
I\ ¢ 0
J Ty, Lo Ao (32)
Jy Tvz Do | A
- 0 - I 2%2 2x2 ﬂ.m3
0 J, s

Moreover, using the generalized coordinates in Equation
(19), J; to Equation (32) is also derived by

Jx, =0 (33)
where
)_Cw:(i'] 22 Xo (0)T (34)

Furthermore if we define new input v(#) in Equation (25)
as

vi(t)=J7 v = JIT%) + (U] = ITHA (33)

Then the whole dynamic equations using Equation (32)
and new coordinate x; (=1, 2) can be represented as
follows:

of -JTA (36)
JX, =0 @7

where v; (i =1, 2) is an actual control input.

Using the generalized coordinate and the differenti-
ation given by Equations (17), (18), we can derive the
following equations from the relationship between the
position of mass center x,=(x, y.)" and new coordinate
X (i=1, 2) as follows:

X, —sing, —hcosé Y & ~Lsing )
.= . + 4 (38)
Vs cos6, —hsing \¢, —Lcosg

=J, =% =lhe 040 ),

x. ) [-siné,
A - cos6,
for simplicity,

35,,=x;1+(12x2 02x2)J¢¢ (40)
Jéu:x-'—2+(02x2 [2><2)'-]{p¢ (41)

—hcos8, \( {5 Lsing ).
. + 2
—hsinB, |\ &y Lcosy (39)

:=(02x2 Lo )Jw

=0o =%,
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Furthermore, substituting the differentiations of Equations
(40), (41) into Equation (36), we can also describe as
follows:

Eo (T 02:2)(Jop + Jp)=vi = A (42)
)Ea—(02xz szz)(J¢¢+J¢¢):V2_ﬂz 43)

4. VIRTUAL PASSIVITY-BASED
DECENTALIZED CONTROL ALGORITHM

In order to design the decentralized PVFC, we assume
that ¢ is measurable for each subsystem in this paper.
Since ¢ is determined based on both 4, and A,, and
both signals can not be used for each subsystem in the
decentralized formulation. The proposed scheme in this
paper is shown in Figure 3.

If the actual control input is defined as

vi = v = (L 0,.5)(,0+J,0) (44)
vV, = VZI—(Ozxz szz)("’(/)é)-{_‘)l}?é)) (45)

Adding the dynamic equation of x,, we can describe the
motion equation of an object as follows:

(sz2+Mo+12x2))zo = v+ (46)

First of all, the procedure in order to apply an individual
PVFC algorithm can be designed that the motion
equation in Equation (46) is separated as the following
virtual dynamic equation

(L2t ML), = V) 47)
(L2t pMo)x, = v (48)
for simplicity,

M'x, = v (i=1,2) (49)

where p,(i =1,2) is load sharing coefficient and it is
satisfied with p, + p,= 1.

Augmel robotic system
{(PVF stem)
Virtual flywheel
é system \

[ N
Energy ' Robotic S))Slem \

!
\ |
' Augmentedgobotic system
/' (PVFC system)

LY
Virtual ﬂywh&l I

system

]
| Desired conto
(‘ {velocity field)

Figure 3. Conception of decentralized PVFC scheme.

Also, the dynamics of the virtual flywheel is given by
Mg = vau (i = 1,2) (50)

where vj, is the coupling control input to the flywheel.
Thus, the dynamics of the augmented system are
composed as follows:

M,%, =v' (i=1,2) (51)

where X, = (%, %) is the velocity of the augmented

system, v, is the augmented control input, and M,," is

the augmented inertia matrix and is defined by

= (M 0) (52)
0 Alfwi

For each augmented configuration X,,, we can define the
kinetic energy of the augmented dynamic system, H,'
which is expressed in local coordinate by

2
, 1 o m— 'y
Ha = ZEXZiMa Xai (53)

For the augmented mechanical system, an augmented
desired velocity field ¥, is needed and it is defined by
section 2.

Condition I: The augmented desired velocity field
satisfies:

Conservation of kinetic energy: The total kinetic energy’
of the augmented system evaluated at the desired velocity
field is constant.

2

ITIai' = Z EXZiMai'Xai =E>0 54

i=1

—_

where E; is a positive constant.

Consistency: The component of the augmented velocity
field that corresponds to the original dynamic equation of
motion system should be the same as the specified
desired velocity field.

Vai = (Vl Vn+1)T (55)

Notice that Ei(i = 1,2) should be selected to be large
enough so that Equation (54) has a real solution. It should
now be apparent that the virtual inertia acts as a reservoir
of kinetic energy.

Then the coupling control law is given by (Yamakita et
al., 2000)

(57)

V;u' = ((_;ai-'—’YiEai)Xai (i: L, 2) (56)
where
= y I — =7 =<
G (X ., X )=—aoc(A O -0 A .
al( ai al) 2El ( alQal Qal al)

skew symmetric
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ﬁai = QHI’Z - EzihQ—aTi‘ (58)

skew symmetric

and y(i=1, 2) is a control gain, not necessary positive.
For any o; € R, the local coordinate representation of
the augmented a-velocity error e, is defined by

€ai = Xai —Q; Vai (59)

Thus, we can obtain the error dynamics for the
augmented system in Equation (50) as follows:

A_lai'éou' = aaieai + ,YikaiXai (60)

Theorem 1: Consider the decentralized PVFC as shown
in Figure 3 where the motion equation is given by
Equation (49), and the individual PVFC control law
consists of the virtual dynamic augmentation Equation
(50) and coupling control law Equation (56). Further-
more if the control input about control internal force is
defined by

wi=(1+ k() 61)

and an actual control input about given system v,’ is also
defined by

Vi,:Vai,+vli, (i: 1, 2) (62)

where v, is desired internal force and satisfies v, '+v,,’

=0. Then the passivity and convergence properties of

decentralized PVFC are summarized as follows:

(1) The augmented feedback system is passive with
respect to the supply rate defined by

s(F,X)=<F x>=F"x (63)

where and are input and output.

(2) For the augmented a-velocity error e,;, the velocity of
an object X,; is a Lyapunov stable solution in the
absence of environment forces.

See Appendix for proofs. |
Furthermore the constraint force 4, convergences to

av ,
Bo.M, ey V+vy; (64)
where £ is a scalar number and ¥ is a desired velocity
field. So if we set

V“'): o, vy 65
(V) =y, ey (65)

’
Vi

where v, is a control input for ¢ and v, is control for an
internal force which does not affect the linear nor angular
motion of an object, and

J,=(cosp —sing —cosg sing)” (66)

So we can control the linear motion f an object by
individual PVFC and both @ and 4, can also be controlled
to desired values.

5. SIMULATION RESULTS

This section illustrates the performance of the proposed
control algorithm for cooperative 3-WMRs using
numerical simulations. The considered dynamic models
will use the similar ones for experiment and is shown in
Figure 4 based on the constructed experimental system.

5.1. Simulation conditions

In Equations (41), (42), they conclude ¢ which actually
is impossible to measure. Therefore, we need to use the
estimate value of @. Assume that ¢ =0, we compose an
observer about the following state equation

7 010\(?
1=l 001 || (67)
o L0004

The observer can be represented by Gopinath'’s design
method as follows:

=K, K (68)
é = g + Kob¢

where K, is observer gain.

Since the desired velocity field is defined such that if a
point moves along the desired velocity, the point
convergences to a circle whose center and radius are the
origin and 1[m] at a constant speed in a anti-clockwise
direction. For the control of angle of an object ¢, desired
angle and angular velocity ¢, and ¢, are defined as
follows:

43

D

Robot 2

2L
Object

Ye

Robot 1

o Xe X2 X I

Figure 4. Configuration of cooperative 3-WMR.
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Table 1. System parameters and initial states for
cooperative mobile robots.

L 0.2 [m] 14 1.0
E 5000 [Nm] M,, 1.0
X 0.0 e 10.0
K. 40 K, 4.0
Gov) (L) Gmy) (@D
6, 72 6 2
) 0.0 o 17
pu=—n' ), =0 (©9)
Ye=Yed

where x., and y., are the desired velocity specified by a
desired velocity field in decentralized PVFC as shown in
Figure 4, respectively.

A control input is determined by

v, ==K(0a— 9)=K, (92— ¢) (70)

and v, was set to 0. The control is used for both robots and
load sharing parameters p; is set to 0.5 since we assumed
that each mobile robot has the same capability. For the
observation of ¢, we will use a minimal order observa-
tion which is designed based on triple integrator model
where the pole of the observer was chosen to —50. The
various system parameters and the initial states used in
numerical simulations are shown in Table 1.

5.2. Simulation Results
When we are include the external force (10,0)[N] to
system from 7= 15[sec] to 7=20[sec], the simulation
results for considered system are shown in Figures 5-9,
respectively.

The desired trajectories and actual trajectories for
cooperative mobile robots and an object are shown in
Figure 5, respectively. In this figure, it can be seen that

¥{m]

15

1 Center of robon 2
_Center of an‘object
Cénter of rabot |

A 1 N 2 L 1
-3 -1 0.3 0 0.5 t [
Xfm]

Figure 5. Trajectories for cooperative 3-wheeled mobile
robots and an object.

Angle[degree]
8

' H H H : H H i HI
0 5 10 13 20 25 30 35 40 45 50
Time[sec]

Figure 6. Angle variations of mobile robots.

Angle [degree]
0 T

0 '5 1.0 !’5 ?iO 2‘5 350 3;5 4;0 4;5 50
Time [sec]

Figure 7. Tracking angle of an angle and desired angle of

an object.

the center of an object follows the desired trajectory
through some tracking error exists due to uncertainties of
parameters and effects of the dead reckoning.

The angle variation of an object is shown in Figure 6,
and the tracking performance of angles for the desired
signals are shown in Figure 7. It also shows good
tracking performance. The constraint force with distur-
bance is shown in Figure 8. Finally, the changes of virtual
energy are plotted in Figure 9. It is seen from the figure
that each virtual energy decreases slightly due to energy
loss caused by incomplete cancellation of friction effects.

Y[m]
1s

Consteatint force of rabot 1

-------- Constratint Force of robot 2

; R H i i ; i
2200 -15 -10 -3 0 5 10 ts 20
X[m]

Figure 8. Constraint forces with disturbance.
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Kinetic energy[Nm]

5015 v s e

500§

5005 L.

.

35 40 45 50
Time[sec]

Figure 9. Kinetic energy of augmented system.

6. CONCLUSIONS

In this paper, we propose a new control methodology for
cooperative 3-wheeled mobile robotic systems convey a
rigid object, and the proposed decentralized control
algorithm is also analyzed using PVFC algorithm.
Especially, the closed-loop input/output systems for
multiple robotic systems are passive with the
environment force as inputs, the system velocities as
outputs, and the environment mechanical powers as
supply rates as if it is similar to an original PVFC. The
closed-loop systems for cooperative mobile robots are
very effective in tracking a multiple of each desired
velocity field and in counteracting the detrimental effect
of environment disturbances when the disturbances are in
the directions of the desired momentums of multiple
robotic systems. Also, the performance will improve
when the multiple robot systems are moving at high
speed.
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APPENDIX

Proof of (1) in Theorem 1: The derivation of kinetic
energy defined by Equation (54) satisfies

= (XTM’X +1XTM’X )
; 2

al ai ai ai

[

=Z(x M5, + %5, M 5, % 5,0) +— ZXU,M(,,XW
= o 2E T
=V fivi

2 2 (al)
A 12 .
=X, z Vi+§ X iV fii
i=t

XalGalXal + XalRﬂlXal
=0 =0

i

1}
S 7 MN

Therefore, upon integration of equation (al), we can
obtain

J o = H0-H0) = 0> -H(0) (a2)

Since FI(,’(O) >0, the system is passive with respect to
the supply rate.
Proof of (2) in Theorem 1: Given a € R, let’s define

the positive definite storage function W, as follows:

2
2 el M, e, (a3)

NI»—‘

Differentiating equation (a3) and the fact that ]\7;,. +2G),;
is skew symmetric, we obtain



554

Z(eTM'

=~Za v

J. H. SUH and K. S. LEE

ey +en M +el M)
5\,_../

MYV .- XM X
Cailailal

ai Lll

‘ZE

=0

ai“* ai

_7Ha'|'

=(

VIM X
e

ai* ai

=<<Vai,Xai >>;,

:—Zay,(4H E—<< w,Xa,. >>§,-)

<0

i=1

)%

(a4)

Since W, is a positive definite function of a-velocity
error e,, we know that the augmented a-velocity error
e,~0 is Lyapunove stable of the error dynamics using
Barlalet’s lemma (Slotine ef al., 1991). |



