A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS)

Choon Hak Lim, M.D.*, Kyung Sun, M.D.*, Ho Sung Son, M.D.*, Jung Joo Lee, Ph.D.***
Znuke Hwang, M.D.*, Hye Won Lee, M.D.*, Kwang Taik Kim, M.D.*

Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxygenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were 13.0 ± 1.7, 12.0 ± 1.9 and 7.6 ± 0.9% in the parallel group, and 22.5 ± 2.4, 23.2 ± 1.9, and 21.8 ± 1.4% in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates (3.1 ± 0.2, 3.7 ± 0.2 L/min vs. 2.2 ± 0.1 and 2.5 ± 0.1 L/min, respectively, p<0.01). Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

(Key words: 1. Cardiopulmonary bypass
2. Life support system
3. Circuits)
대상 및 방법

1) 실험 디자인 및 모델

T-PLS의 최로에 따른 EEP과 월프박측량을 관찰하기 위하여 9 볼트의 적류 전지로 실시 세동을 유도하였고 실장과 실장 상에 생리 식염수를 차게 하여 세동으로써 실실 세동을 유지하였다. 실험론 중 체외순환은 우심방과 대동맥을 우회하는 중 체외순환 기법을 사용하였다.

2) 실험 동물 및 실험군

실험 동물의 관리는 고려대학교 의과대학 실험 동물 관리 지침서의 기준에 준하였다. 암수 구별 없이 동물체가 35~45 kg의 월리시(Yorkshire Swine) 12 마리를 대상으로 하여, 각각 6마리씩 무작위로 두 군으로 나누었다. 적렬군(Serial group, n=6)은 T-PLS의 두 개의 구동 월프 사이에 기존의 막행산화기(Capoix SX10, Terumo Co., Tokyo, Japan)가 존재하며 T-PLS의 구동 월프가 직접로 연결된 경우이며(Fig. 2A), 병렬군(Parallel group, n=6)은 T-PLS의 구동 월프가 gravity flow 막행산화기(Capiox CX230, Terumo Co., Tokyo, Japan)의 후방에 병렬로 위치한 경우로 분류하였다(Fig. 2B).

3) 마취

실험 동물에 ketamine 10 mg/kg를 근주하여 견취하였으며, 동물체를 측정한 후 수술대로 옮겼다. 실험 동물의 좌우측 날라리와 좌측 월타리에 심도로 유도전극을 고정
Figure 2. Circuit Configurations of T-PLS. MO=Membrane oxygenator. (A) The serial circuit configuration; a conventional membrane oxygenator (Capiox SX10, Terumo Co., Tokyo, Japan) is placed between the twin blood sacs serially. (B) The parallel circuit configuration; the twin blood sacs of T-PLS are placed downstream of a gravity flow membrane oxygenator (Capiox CX230, Terumo Co., Tokyo, Japan) parallelly.

하여 심전도를 관찰하였다. 양파와 차세에서 극 부위에 2% lidocaine를 주입하여 국소마취를 시행하고 기관 정계술을 하여 투브의 내경이 6~7 mm인 기관내 투브로 기도 삽입을 시행하였다. 우측 경정맥에 정맥로를 확보하고 Thiopental sodium 5~10 mg/kg와 vecuronium bromide 0.1 mg/kg를 정주하여 마취를 유도하였으며 정맥와 채취한 propofol을 6 mg/kg/hr 속도로 지속적으로 정주하고 N2O/O2를 각각 2 L/min 기계환기시켰다. 이 때 일회 호흡량은 10~15 ml/kg로 하였으며 호흡 수는 분당 20~25회로 조절하였다. 우측 경정맥에 삽입 풍기용(Phur-String Suture)을 이용하여 20 G 도관을 거치하여 지속적으로 동맥 압을 측정하였다.

4) 실험 방법

실험 동물은 양파와 차세에서 3개 녹률간 사이로 황황골 개개술(Clampshell Incision)을 시행하였다. 양파 내골 동맥을 박리, 절단 후 황황골을 절단하였고 심박을 멈추어 절개한 후 심장부 삽입시켰고 안정적인 수술 시야를 확보하기 위해 심박을 이용하여 심장 요람을 만들었다. 혈관은 3 mg/kg를 주입한 후, ACT를 측정하여 400초가 넘는 것을 확인한 후 22 F 캐놀라를 각각 우파방이개부로 통하여 상대정맥에, 우심방 하단부를 통하여 하대정맥에 삽입하고, 18 F 캐놀라를 대동맥 기부부에 삽입하여 두 군에 T-PLS를 각각 연결하였다. 기초치를 측정한 후 9 볼트의 배터리로 심신 세동 상태를 유지하면서 총 심폐부화율을 시행하였다. T-PLS의 회로는 lactated Ringer 1,300 mL 용액을 사용하여 체액량과 혈액량의 가스는(FIO2: 0.6) 2 L/min로 하였다. 각각의 정치를 구하였다. 최종 관찰이 끝난 후 실험 동료는 마취상태에서 안락사시킨 후 실험실 규정에 따라 폐기하였다.

5) 관찰 지표

혈류는 ultrasonic flow meter (TS410 flow meter, ME-11PX probe, Transonic, NY, USA)로 대동맥 캐놀라에 거쳐 측정하였고, 평균 동맥압은 하행 대동맥에서 측정하였다. 구동 월프의 속도는 30, 40, 50 BPM에서 30초 동안 혈압과 혈류 파형을 동시에 연속적으로 측정하였으며 각 측정치는 6번씩 반복하여 측정하여 MATLAB software (Mathworks, MA, USA)를 이용하여 분석하였다.

혈압-혈류 파형 분석(Quantification of pressure-flow waveforms)

동가압력에너지(Energy Equivalent Pressure, EEP)를 정의 하는 식은 다음과 같다[3-5].

EEP (mmHg) = \left(\frac{p}{f_{pfd}} \right) \left(\frac{f_{pfd}}{f_{fd}} \right)

E는 혈류 속도(L/min), p는 동맥압(mmHg)를 나타내며, 혈류와 압력의 한 사이를 통안 혈류와 압력을 곱한 파형은 시간에 따라 적분한 수치를 혈액학적 힘(hemodynamic power curve)을 혈류를 시간에 따라 적분한 수치(pump flow-rate curve)로 나눈 값이다.

일명 혈액학 에너지(Surplus Hemodynamic Energy, SHE)는 다음과 같이 정의된다[4].

SHE (ergs/cm^3) = 1.332 \times (EEP-MAP)

MAP는 평균동맥압을 나타내며, 1.332는 압력 단위인 mmHg를 에너지 단위인 erg/cm^3로 전환하기 위한 상수이다. SHE는 EEP와 평균 동맥압의 차이인 'extra energy'를 의미하는 것으로 비복동성 혈류에서는 EEP가 평균동맥압과 같거나 그 수치가 0이지만 박동성이 있는 상태에서 EEP 값이 평균동맥압보다 높으므로 의미 있는 수치를 갖는다.

6) 통계 처리

모든 관찰치는 평균±표준오차(mean±SEM)로 표시하였으며, 통계프로그램으로 SAS (version 8.0)을 사용하였다. 두 군 사이에 EEP와 평균동맥압의 차의 배분율 값과 월프흡출량을 비교하기 위해 Wilcoxon rank sum test를 이용하였으며, 각 군 안에서 혈류속도에 따른 관찰치를 비
Fig. 3. Pressure and flow waveforms in the serial circuit configuration. In the serial group, the pressure and flow waveforms showed a large pulse followed by a small pulse, i.e., twin pulses.

Fig. 4. The pressure and flow waveforms in the parallel circuit layout. In the parallel group, the pressure and flow waveforms showed ‘doubled pulse rate’ of similar amplitude at a given pump-setting rate.

Table 1. Pulse pressure, percent changes from MAP to EEP, pump output, and SHE according to the pump-setting rates

<table>
<thead>
<tr>
<th>Group</th>
<th>Pump-setting rate (BPM)</th>
<th>Pulse pressure (mmHg)</th>
<th>Change from MAP to EEP (%)</th>
<th>Pump output (L/min)</th>
<th>SHE (ergs/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel</td>
<td>30</td>
<td>47.3±4.6*</td>
<td>13.0±1.7*†</td>
<td>2.3±0.2†</td>
<td>20,131±1,408*</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>57.1±5.4*</td>
<td>12.0±1.9*</td>
<td>3.1±0.2*†</td>
<td>21,739±2,470*</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>68.8±9.1*</td>
<td>7.6±0.9*†</td>
<td>3.7±0.2*†</td>
<td>15,048±2,108*</td>
</tr>
<tr>
<td>Serial</td>
<td>30</td>
<td>94.9±5.4</td>
<td>22.5±2.4</td>
<td>1.9±0.1†</td>
<td>33,968±3,001</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>107.5±5.0</td>
<td>23.2±1.9</td>
<td>2.2±0.1†</td>
<td>38,232±3,281</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>112.6±5.7</td>
<td>21.8±1.4</td>
<td>2.5±0.1†</td>
<td>37,964±2,693</td>
</tr>
</tbody>
</table>

MAP=Mean aortic pressure; EEP=Energy equivalent pressure; SHE=Surplus hemodynamic energy/Values are given as mean±SEM. †p<0.05, differences between the groups at the given pump-setting rate; ‡p<0.05, difference of pump outputs within each group; ††p<0.05, difference of percent changes from MAP to EEP within the parallel group; ‡‡p<0.05, difference of SHE within the parallel group.

고함 때는 Kurskal-Wallis test를 이용하였다. p값이 0.05 이하일 때 통계적으로 유의하다고 간주하였다.

결 과

병렬군에서는 MAP와 EEP의 백분율 변화는 폐압도 30, 40, 50 BPM에서 각각 13.0±1.7%, 12.0±1.9%, 7.6±0.9%였으며 폐압도에 따라 의미있는 차이를 보였다 (p=0.035). 직렬군에서는 MAP와 EEP의 백분율 변화는 폐압도 30, 40, 50 BPM에서 각각 22.5±2.4%, 23.2±1.9%, 21.8±1.4%였으며 폐압도에 따른 차이를 나타내지 않았다 (p=NS). 직렬군은 병렬군에 비해 각각의 폐압도 30, 40, 50 BPM에서 MAP와 EEP의 백분율 변화가 높게 나타났다 (p=0.030)(Table 1, Fig. 5).

병렬군에서는 MAP와 EEP의 백분율 변화는 폐압도 30, 40, 50 BPM에서 각각 2.3±0.2 L/min, 3.1±0.2 L/min, 3.7±0.2 L/min이었으
Fig. 5. Percent changes from MAP and EEP at the given pump-setting rates Values shown are as means±SEM. *p<0.05, the differences between the groups at the given pump-setting rate. †p<0.05, the difference within the parallel group. No difference within the serial group was noted (p=NS).

Fig. 6. Pump outputs (L/min) at the given pump-setting rates Values are presented as means±SEM. *p<0.05, the differences between the groups. †p<0.05, the difference within each group. Both groups showed increased pump output as the pump-setting rate increased.

Fig. 7. SHE (ergs/cm²) at the given pump-setting rates Values are presented as means±SEM. *p<0.05, the differences between the groups. †p<0.05, the differences within each group.

20,131±1,408 erg/cm², 21,739±2,470 erg/cm², 15,048±2,108 erg/cm²이었으며 움프속도에 따라 의미있는 차이를 보였다(p=0.04). 직렬군에서는 움프속도 30, 40, 50 BPM에서 각각 33,968±3,001 erg/cm², 38,232±3,281 erg/cm², 37,964±2,693 erg/cm²이었으며 움프속도에 따른 차이를 보이지 않았다(p=NS). 직렬군은 병렬군에 비해 각각의 움프속도 30, 40, 50 BPM에서 SHE가 높게 나타났다(p=0.030)(Table 1, Fig. 7).

고찰

생명구조장치에서 생리적인 박동혈류를 제공하기 위한 노력이 있어 왔다. 단일 박동형 구동장치가 시도되었으나 박동혈관의 기지부에서의 높은 회로 압력이 발생되고 심한 적혈구 손상이 초래되어 박동형 생명구조장치 개발에 실패하였다(6,7). 이에 대해 이중구동장치인 한국형 인공 심장(AnyHeart)의 기술을 토대로 새로운 형태의 박동형 생명구조장치(T-PLS)가 개발되었다(8,9). 이중구동장치인 T-PLS는 효과적으로 박동혈관의 기지부의 회로내 압력을 감소시키고 회로내 압력 증가량(du/dtmax)을 감소시키는 경로로 혈관 손상을 감소시킬 수 있었다(216 vs. 744 mmHg/sec[10]. 박동혈관이 가속한 압력 변화가 혈류의 박동성에 영향을 미칠 수 있다는 의견이 제시되고 있다(7,11). Capiox CX230 (Terumo Co., Tokyo, Japan)과 같은 gravity flow hollow fiber 타입의 박동혈관기관은 다른 어떤 형태의 만화기보다 박동성 측면에서 효과적이 될 수 있는지, 이는 gravity flow hollow fiber membrane 혈류에 대한
한 저항이 높아 제외된 부위의 혈류가 증가할 때에도 단순화를 통과하며 펌프는 단순화 후방에 위치함으로써 단순화된 부위의 박동성에 영향을 미치지 않기 때문이었다. 저자들은 gravity flow hollow fiber 막혈관을 사용할 경우 T-PLS의 이중 펌프는 단순화의 후방에 위치시키는 것이 효율적인 박동성을 유지를면서 기존의 막혈관을 이용한 직접회로 구조에 비해 주어진 펌프의 속도에 대해 두 배의 혈류 속도를 얻으므로 펌프 박동량을 증가시킬 수 있으므로 가능하였다(Fig. 2, 3).

본 실험을 통하여 새로운 빌형회로 구조는 직접회로 구조에 비해 펌프박동량을 높일 수 있으며 동시에 효과적인 박동성을 보장하는 것이 관찰되었다. 빌형회로 구조의 경우 직접회로 구조보다 높은 펌프 박동량을 나타내었는데, 이는 각 혈액주머니가 대동맥 캐널라쪽에 빌형으로 연결되어 있어 actuator가 차우로 움직이는 갭의 혈액주머니를 변화하는 압력을 두 개의 맥박이 발생하게 되기 때문에 직접적으로 현반의 펌프가 현반의 맥박이 발생하게 된다. 반면, 직접회로인 경우 혈액주머니가 막혈관화 전방과 후방에 적절로 연결되어 있고 actuator가 차우로 움직이면서 각각의 혈액주머니를 변화하는 압력에 두 개의 맥박이 발생하게 된다. 즉 빌형회로인 경우 펌프속도 30 BPM에서 박막수는 60 BPM이 되며, 직접회로인 경우 펌프속도가 30 BPM에서 박막수는 30 BPM을 나타내게 된다.

본 실험에서는 박동성 생명경조직인 T-PLS의 두 개의 다른 회로 구조를 설정하고 각각의 박동성을 평가하는 데 EEP과 SHE 수치를 비교하였다. EEP감은 박동성 혈류는 압력차에 의해서 발생되거나 압력차에 의존하다는 개념을 바탕으로, 압력과 혈류와의 주기동 안 압력과 혈류를 곡선과 직소에 따라 적절한 혈류학적 팀(hemodynamic power)을 시간에 따른 혈류과의 적분값(flow-rate curve)으로 나눈 수식으로 1966년 Shepard에 의해 발표되었다[3]. SHE는 EEP와 평균 동맥압의 차에, 압력에서 이차로 전환시키는 상수를 곡선으로 혈류가 가지는 여분의 에너지(extra energy)를 나타내는 대용량한 개념이라고 소개되고 있다[4]. 현대적인 생명경 조직체의 연구가 40여 년이 지났으나 현재까지 박동성을 평가하는 방법은 결과가 정립되지 않았다. 대개 기기장치의 브랜드 이름으로만 박동성을 분류하여 비박동성 장치와 비교하기도 하며, 이런 경우에는 맥압차가 15 mmHg 이상이면 박동성 혈류를 발생시키며 맥박수가 15·mmHg 비만이면 비박동성이라고 정의하기도 한다[11].

이 연구의 제한점으로는 각 회로내의 압력과 혈류 파도를 나타내는 혈액학적 데이터를 동시에 비교하지 않았으나 신화균 등[14]은 유사한 실험 모델에서 T-PLS의 회로 내부 압력이 높고, 용혈 등의 심각한 부작용은 없었다고 보고하였다. 이 실험의 목적은 회로 구조에 따른 박동성과 펌프박동량 변화에 주점을 두고 T-PLS의 회로 구조의 최적화 모델을 찾는 데 있었지만, 추후 보완연구가 제시되어야 한다고 생각된다. 또한 이 실험은 정상 35~45 kg의 동물에서 30, 40, 50 BPM 펌프속도가 느릴 수 있다는 점이다. 이러한 펌프속도는 이중구동프린T-PLS의 구동 메커니즘의 특성으로 기인한 것이며, 빌형회로 구조로 바꾸면 경우 펌프속도 30, 40, 50 BPM에서 박막수 60, 80, 100 BPM이 관찰되었다.

결론적으로 박동성 이중구동프린T-PLS의 회로가 박동성과 직접회로 모두에서 효과적인 박동성을 나타내었다. 펌프 박동량의 측면에서 고려한다면 빌형회로 구조가 직접회로 구조보다 주어진 펌프속도에 2배의 박막수를 나타내므로 높은 펌프박동량을 제공하였다.

결론

본 연구는 한국형 생명결조직의 회로구성을 최적화하기 위해 계획되었으며, 박동처리와 펌프박동량을 이용하여 기존의 막혈관화기를 사용한 직접회로구조와 gravity flow hollow fiber 막혈관화기를 이용한 빌형회로 구조를 비교하였을 때, 두 구조 모두 효과적인 박동성을 나타
내었으나 핫프 박출량 측면에서 gravity-flow hollow fiber막형결합기를 이용한 병렬회로 구조가 기존의 직렬회로구조보다 높은 핫프 박출량을 나타내었다.

참 고 문 현

대표의자
2005/38:661-668

=국문 초록=

배경: 혈관순환장치 중 막혈상환기를 사용하는 인공심폐기나 생명구조장치(Extra-corporeal Life Support System; ECLS)는 혈액이 동과하기 위해 막혈상환기를 전방에 구동펌프가 요구된다. 국내에서 개발된 박동식 생명구조장치(T-PLS)의 경우는 막혈상환기를 두 개의 혈액주머니 사이에 위치하여 액체에 이어가 밖으로 빠내는 구조로 되어 있다. 저자 등은, 만일 저항이 낮은 gravity-flow hollow fiber 막혈상환기를 사용한다면 두 개의 혈액주머니와 구동펌프를 막혈상환기 후방에 설치하는 것이 가능하며, 이러한 구조는 같은 펌프박동 조건에서 2배의 백수를 보장하므로 펌프박출량이 증가됨 것으로 가정하였다. 본 설립은 한국형 생명구조장치의 회로구성을 최적화하기 위해 개발되었으며, 기존의 막혈상환기를 사용한 직렬로구조와 gravity-flow hollow fiber 막혈상환기를 이용한 병렬로구조로 구조를 박동에너지와 펌프박출량을 이용하여 비교하였다. 대상 및 방법: 실험은 35-45 kg의 휴지 12마리에서 심실세혈형 장치 모델을 만들었으며, T-PLS 회로구성 형태에 따라 두 군으로 나누었다. 직렬군은 두 개의 혈액주머니 중간에 기존 막혈상환기를 직렬로 설치하였으며, 병렬군은 gravity-flow hollow fiber 막혈상환기 후방에 이중구동펌프를 병렬로 설치하였다. 펌프박출량은 대동맥 포란에서 직접 혈류를 측정하였고, 등가압력에너지(EEP)는 실시간으로 컴퓨터에 저장된 펌프박출곡선과 하행대동맥 혈압곡선에서 계산하였다. 각 저료는 펌프속도 30, 40, 50 BPM에서 면비 측정하였다. 결과: 두 군 모두 박동에너지 측면에서 충분한 박동성을 보여주었다. 펌프속도 30, 40, 50 BPM에서 EEP와 평균혈압의 변화율은 병렬군의 경우 13.0±7.4%, 12.0±1.9%, и 7.6±0.9% 였으며, 직렬군의 경우 22.5±2.4%, 23.2±1.9%, и 21.8±1.4%였다. 펌프박출량의 경우는 펌프속도 40, 50 BPM에서 병렬군의 경우 3.1±0.2 4.7±0.2 L/min였으며, 직렬군의 경우 2.2±0.1 и 2.5±0.1 L/min었다(p<0.05). 결론: 혈류 저항이 낮은 gravity-flow 막혈상환기를 사용하여 T-PLS 구동펌프를 병렬로써 배치할 경우 효과적인 박동성은 유지하면서, 기존의 막혈상환기를 이용한 직렬로구조에 비해 펌프박출량을 증가 시켰다.

중심 단어: 1. 혈관순환
2. 생명구조장치
3. 회로