연소 특성치를 이용한 고분자재료의 연소열 예측

Prediction of Heat of Combustion of Polymer Materials Using Combustion Characteristics

  • 하동명 (세명대학교 안전공학과) ;
  • 이수경 (서울산업대학교 안전공학과)
  • 발행 : 2005.09.01

초록

고분자물질의 연소열은 고분자를 취급하는 공정에서 잠재적인 화재 위험성을 예측하기 위해 다른 화재 매개변수와 함께 사용될 수 있는 중요한 화재 특성치이다. 본 연구의 목적은 건축내장재 등으로 다양하게 사용되고 있는 고분자물질의 연소열을 예측하고자 한다. 다중회귀분석과 문헌자료를 사용하여 고분자물질의 연소열을 예측할 수 있는 식을 제시하였다. 산소소비열량과 완전연소 시 화학양론계수에 의한 연소열의 예측값과 문헌값의 평균절대퍼센트오차(A.A.p.E.)는 4.46, 평균절대편차(A.A.D.)는 1.09 그리고 상관계수는 0.972이다 제시한 예측식에 의한 계산값은 문헌값과 일치하였다. 따라서 본 연구에서 제시된 식이 다른 고분자 내장재의 연구에도 이용되기를 기대한다.

The heat of combustion of polymer materials is an important fire characteristics, which can be used with other fire parameter to predict the potential fire hazard in the polymer handling process. The aim of this study is to predict the heat of combustion for polymers which used in the building interior materials. By using the literature data and multiple regression, the new equation for predicting the heat of combustion of polymers is proposed. The A.A.p.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated heat of combustion by means of the oxygen consumption calorimeter and the stoichiometric coefficient were 4.46 and 1.09, and the correlation coefficient was 0.972. The values calculated by the proposed equations were in good agreement with the literature data. Therefore, it is expected that this proposed equations will support the use of the research for other polymer materials.

키워드

참고문헌

  1. NFPA, 'SFPE Handbook Fire Protection Engineering', National Fire Protection Association, Quincy, Massachusetts(1995)
  2. D. Drysdale, 'An Introduction to Fire Dynamics', 2nd ed., John Wiley & Sons(1998)
  3. R. N. Walter, S. M. Hackett and R. E. Lyon, 'Heat of Combustion of High Temperature Polymers', Fire and Materiald, Vol. 24, pp.245-252(2000) https://doi.org/10.1002/1099-1018(200009/10)24:5<245::AID-FAM744>3.0.CO;2-7
  4. F. Y. Hshieh, D. B. Hirsch and H. D. Beesen, 'Predicting Heat of Combustion of Polymers Using an Empirical Approach', Fire and Materials, Vol. 27, pp.9-17(2003) https://doi.org/10.1002/fam.815
  5. D. M. Ha and S. J. Lee, 'Prediction of the Net Heats of Combustion of Organic Compounds based on the Atomic Contribution Method', T. of Korean Institute of Fire Sci. & Eng., Vol. 17, No.4, pp.7-12(2003)
  6. V. Babrauskas, 'Ignition Handbook', Fire Science Publishers(2003)
  7. C. J. Hilado, 'Flammability Handbook for Plastics', 3rd ed., Technomic Publishing Company(1982)
  8. R. H. Perry and G. W. Green, 'Perry's Chemical Engineers' Handbook', 7th edition, McGraw-Hill, New York(1997)
  9. D. R. Lide, 'Handbook of Chemistry and Physics', 76th Edition, CRC Press, Boca Raton(1995)
  10. F. Y. Hshieh, 'Predicting Heats of Combustion and Lower Flammability Limits of Organosilicon Compounds', Fire and Materials, Vol. 23, pp.79-89 (1999) https://doi.org/10.1002/(SICI)1099-1018(199903/04)23:2<79::AID-FAM673>3.0.CO;2-F
  11. R. D. Cardozo, 'Prediction of the Enthalpy of Combustion of Organic Compounds', AICHE Journal, Vol. 32, No.5, pp.844-847(1986) https://doi.org/10.1002/aic.690320514
  12. G. E. P. Box and N. R. Draper, 'Empirical Model-Building and Response Surface', John-Wiley & Sons, Inc.(1987)
  13. D. M. Ha, 'A Study on the Prediction of Flashover time and Heat Release Rate (HRR) for Building Interior Materials', T. of Korean Institute of Fire Sci. & Eng., Vol. 18, No.3, pp.30-38(2004)
  14. D. G. Kleinbaum, L. L. Kuper and K. E. Muller, 'Applied Regression Analysis and Other Multivariable Methods', 2nd ed., PWS-KENT Publishing Co.(1988)
  15. D. M. Ha, 'Interrelationship of Fire and Explosion Properties for Chlorinated Hydrocarbons', J. of the Korean Institute for Industrial Safety, Vol. 17, No. 4, pp.126-132(2002)