Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments

갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출

  • Byun Ki-Deuk (School of Biological Science, Seoul National University) ;
  • Lee Jung-Hyun (Marine Biotechnology Center, Korea Ocean Research and Development Institute) ;
  • Lee Kye-Joon (School of Biological Science, Seoul National University) ;
  • Kim Sang-Jin (Marine Biotechnology Center, Korea Ocean Research and Development Institute)
  • 변기득 (서울대학교 생명과학부) ;
  • 이정현 (한국해양연구원 해양생명공학센터) ;
  • 이계준 (서울대학교 생명과학부) ;
  • 김상진 (한국해양연구원 해양생명공학센터)
  • Published : 2005.09.01

Abstract

Vibrio vulnificus, one of the marine bacterial pathogens causing septicemia, was detected using molecular methods, namely, PCR and/or Southern hybridization, and real-time PCR. Extracted and purified total DNAs by using commercial kits were used as templates for PCR. Multiplex-PCR was conducted by employing three sets of primers for the genes, hemolysin (vvhA), phosphomannomutase (pmm), and metalloprotease (vvpE), for V vulnificus virulence. The presence of DMSO ($5\%$) and BSA ($0.1\%$) in PCR reaction mixture improved a detection efficiency by higher PCR band intensities. TaqMan real-time PCR was carried out by using gene segment of vvhA as a target. Detection limit of PCR/Southern hybridization without enrichments was to be around $10^2\;cells\;g^{-1}$ of sample. However, those three methods using the enrichment at $35^{\circ}C$ in APW showed high sensitivity ($2\~10\;cells\;g^{-1}$ of sediments). Highly sensitive detection of V vulnificus by real-time PCR was achieved within $5\~6$ hr, whereas the detection by PCR/Southern hybridization required about 36 hr. Thus, it was evident that real-time PCR is the most rapid and efficient method for detecting V vulnificus in tidal flat sediments.

갯벌 퇴적물에 존재하는 병원성 해양미생물인 Vibrio vulnificus를 신속하고 정확하게 검출하기 위해 PCR, Southern hybridization 방법과 real-time PCR을 수행하여 검출 민감도를 비교하였다. 갯벌 퇴적물로부터 bead beater를 이용한 물리적 방법으로 DNA 조추출액을 얻고 상용화된 키트 (Geneclean turbo Kit)를 이용하여 부식물질(humic substances)을 제거하였다. 병원성에 관련된 3 종의 유전자(hemolysin, vvhA; phosphomannomutase, pmm; metalloprotease, vvpE)를 대상으로 설계한 프라이머 셋을 동시에 사용하는 multiplex PCR 방법과 Southern hybridization과 병행한 방법(PCR/Southern hybridization)을 수행하였다. Real-time PCR은 hemolysin 유전자(vvhA)에 특이한 프라이머와 TaqMan 탐침을 사용하였다. 전처리하지 않은 갯벌 퇴적물의 경우, PCR/Sourthern hybridization과 real-time PCR 방법의 검출 민감도는 퇴적물 1 g 당 약 $10^2$ 개의 세포 수준이었다. 농후처리액(APW; alkaline peptone water)으로 $35^{\circ}C$에서 $2{\~}3$시간, 8시간 중균 배양할 경우 갯벌 퇴적물 1 g 당 $2{\~}10$개 세포가 존재할 때 PCR/Southern hybridization 방법과 real-time PCR 방법으로 각각 검출할 수 있었다. 전처리 과정을 포함하여 real-time PCR은 $6{\~}7$시간, PCR/Sourthern hybridization은 약 36시간이 소요되었다.

Keywords

References

  1. 고정운, 박석돈. 1987. 각종 배지에서 Vibrio vulnificus의 배양상의 특성. 대한피부과학회지 25. 193-198
  2. 국립보건원. 2002. 법정전염병 실험실 진단지침 (Guidelines for Laboratory Diagnosis of Statutory Communicable Diseases)
  3. 박석돈. 1993. V. vulnificus 감염증. 대한피부과학회지 31, 289-304
  4. 박석돈, 손동선, 고정운. 1986. 수소이온 농도가 V. vulnificus 성장에 미치는 영향. 대한 피부과학회지 24, 354-357
  5. 이정현, 신현희, 이홍금, 권개경, 김상진. 1998. 해양퇴적물의 핵산추출물에서 humic substances의 효율적인 제거 방법. 한국미생물학회지 34, 132-136
  6. Bassler, H.A., S.J.A. Flood, K.J. Livak, J. Marmaro, R. Knorr, and C.A. Batt. 1995. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl. Environ. Microbiol. 61, 3724-3728
  7. Berthelet, M., L.G. Whyte, and C.W. Greer. 1996. Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns. FEMS Microbiol. Lett. 138, 17-22 https://doi.org/10.1111/j.1574-6968.1996.tb08128.x
  8. Brasher, C.W., A. DePaola, D.D. Jones, and A.K. Bej. 1998. Detection of microbial pathogens in shellfish with multiplex PCR. Curr. Microbiol. 37, 101-107 https://doi.org/10.1007/s002849900346
  9. Brauns, L.A., M.C. Hudson, and J.D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable V. vulnificus cells. Appl. Environ. Microbiol. 57, 2651-2655
  10. Campbell, M.S. and A.C. Wright. 2003. Real-time PCR analysis of V. vulnificus from oysters. Appl. Environ. Microbiol. 69, 7137-7144 https://doi.org/10.1128/AEM.69.12.7137-7144.2003
  11. Chen, S., A. Yee, M. Griffiths, C. Larkin, C.T. Yamashiro, R. Behari, C. Paszko-Kolva, K. Rahn, and S.A. De Grandis. 1997. The evaluation of fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int.Food Microbiol. 35, 239-250 https://doi.org/10.1016/S0168-1605(97)01241-5
  12. Chung, M.S., B.M. Rim, T.B. Uhm, and M.K. Park. 1997. A detection method for V. vulnificus using monoclonal antibodies. J. Microbiol. 35, 87-91
  13. Coleman, S.S. and J.D. Oliver. 1996. Optimization of conditions for the polymerase chain reaction amplification of DNA from culturable and nonculturable cells of V. vulnificus. FEMS Microbiol. Ecol. 19, 127-132 https://doi.org/10.1111/j.1574-6941.1996.tb00205.x
  14. DePaola, A., G.M. Capers, and D. Alexander. 1994. Densities of V. vulnificus in the intestines of fish from the U.S. Gulf coast. Appl. Environ. Microbiol. 60, 984-988
  15. Farmer, J.J. III. 1979. Vibrio (Beneckea) vulnificus, the bacterium associated with sepsis, septicemia, and the sea. Lancet 2, 903
  16. Gonzalez, S.F., M.J. Krug, M.E. Nielsen, Y. Santos, and D.R. Call. 2004. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J. Clin. Microbiol. 42, 1414-1419 https://doi.org/10.1128/JCM.42.4.1414-1419.2004
  17. Jackson, J.K., R.L. Murphree, and M.L. Tamplin. 1997. Evidence that mortality from V. vulnificus infection results from single strains among heterogeneous populations in shellfish. J. Clin. Microbiol. 35, 2098-2101
  18. Jeong, K.C., H.S. Jeong, J.H. Rhee, S.E. Lee, S.S. Chung, A.M. Starks, G.M. Escudero, P.A. Gulig, and S.H. Choi. 2000. Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infect. Immun. 68, 5096-5106 https://doi.org/10.1128/IAI.68.9.5096-5106.2000
  19. Koetsier, P.A., J. Schorr, and W. Doerfler. 1993. A rapid optimized protocol for downward alkaline Southern blotting of DNA. Biotechniques 15, 260-262
  20. Kuske, C.R., K.L. Banton, D.L. Adorada, P.C. Stark, K.K. Hill, and P.J. Jackson. 1998. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64, 2463-2472
  21. Lee, J.H., K.H. Lee, and S.H. Choi. 2001. Enumeration of V. vulnificus in natural samples by colony blot hybridization. J. Microbiol. Biotechnol. 11, 302-309
  22. Lee, J.Y. and S.H. Choi. 1995. Rapid and direct detection of V. vulnificus in small octopus (Octopus variabilis) using polymerase chain reaction. J. Microbiol. Biotechnol. 5, 181-187
  23. Lee, S.E., S.Y. Kim, S.J. Kim, H.S. Kim, J.H. Shin, S.H. Choi, S.S. Chung, and J.H. Rhee. 1998. Direct identification of V. vulnificusin clinical specimens by nested PCR. J. Clin. Microbiol. 36, 2887-2892
  24. Lee, Y.K., H.W. Kim, C.L. Liu, and H.K. Lee. 2003. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J. Microbiol. Methods 52, 245- 250 https://doi.org/10.1016/S0167-7012(02)00180-X
  25. Linder, K. and J.D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of V. vulnificus. Appl. Environ. Microbiol. 55, 2837-2842
  26. Lyon, W.J. 2001. TaqMan PCR for detection of Vibrio cholerae O1, O139, Non-O1, and Non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl. Environ. Microbiol. 67, 4685-4693 https://doi.org/10.1128/AEM.67.10.4685-4693.2001
  27. Marco-Noales, E., E.G. Biosca, and C. Amaro. 1999. Effects of salinity and temperature on long-term survival of the eel pathogen V. vulnificus biotype 2 (serovar E). Appl. Environ. Microbiol. 65, 1117-1126
  28. Montanari, M.P., C. Pruzzo, L. Pane, and R.R. Colwell. 1999. Vibrios associated with plankton in a coastal zone of the Adriatic Sea (Italy). FEMS Microbiol. Ecol. 29, 241-247 https://doi.org/10.1111/j.1574-6941.1999.tb00615.x
  29. Nogva, H.K., K. Rudi, K. Naterstad, A. Holck, and D. Lillehaug. 2000. Application of 5'-nuclease PCR assay for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Environ. Microbiol. 66, 4266-4271 https://doi.org/10.1128/AEM.66.10.4266-4271.2000
  30. Norton, D-M., and C.A. Batt. 1999. Detection of viable Listeriamonocytogenes with a 5' nuclease PCR assay. Appl. Environ. Microbiol. 65, 2122-2127
  31. Oliver, J.D., R.A. Warner, and D.R. Cleland. 1982. Distribution and ecology of V. vulnificus and other lactose-fermenting marine Vibrios in coastal waters of the Southeastern United States. Appl. Environ. Microbiol. 44, 1404-1414
  32. Panicker, G., M.L. Myers, and A.K. Bej. 2004. Rapid detection of V. vulnificus in shellfish and Gulf of Mexico water by real-time PCR. Appl. Environ. Microbiol. 70, 498-507 https://doi.org/10.1128/AEM.70.1.498-507.2004
  33. Stavric, S. and B. Buchanan. 1995. Laboratory procedure MFLP-73 (The isolation and enumeration of Vibrio vulnificus from fish and seafoods). Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada
  34. Tamplin, M.L., A.L. Martin, A.D. Ruple, D.W. Cook, and C.W. Kasper. 1991. Enzyme immunoassay for identification of V. vulnificus in seawater, sediment, and oysters. Appl. Environ. Microbiol. 57, 1235-1240
  35. Tsai, Y.L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070-1074
  36. Tsai, Y.L. and B.H. Olson. 1992a. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58, 754-757
  37. Tsai, Y.L. and B.H. Olson. 1992b. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl. Environ. Microbiol. 58, 2292-2295
  38. Vishnubhatla, A., D.Y.C. Fung, R.D. Oberst, M.P. Hays, T.G. Nagaraja, and S.J.A. Flood. 2000. Rapid 5-nuclease (TaqMan) assay for detection of virulent strains of Yersinia enterocolitica. Appl. Environ. Microbiol. 66, 4131-4135 https://doi.org/10.1128/AEM.66.9.4131-4135.2000
  39. Wang, H.Y. and G-H. Lee. 2003. Rapid identification of V. vulnificus in seawater by real-time quantitative TaqMan PCR. J. Microbiol. 41, 320-326
  40. Weichart, D. and S. Kjelleberg. 1996. Stress resistance and recovery potential of culturable and viable but nonculturable cells of V. vulnificus. Microbiology 142, 845-853 https://doi.org/10.1099/00221287-142-4-845
  41. Weichart, D., D. McDougald, D. Jacobs, and S. Kjelleberg. 1997. In situ analysis of nucleic acids in cold-induced nonculturable V. vulnificus. Appl. Environ. Microbiol. 63, 2754-2758
  42. Wilson, I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63, 3741-3751
  43. Yang, H.C., S.S. Hong, K.H. Kim, S.H. Choi, and H.J. Chung. 1999. Distribution of V. vulnificus in Chonnam coastal area. Korean J. Appl. Microbiol. Biotechnol. 27, 70-74