Properties of a Hexane-Degrading Consortium

Hexane 분해 혼합균의 특성

  • Lee Eun-Hee (Department of Environemental Science and Engineering, Ewha Womans University) ;
  • Kim Jaisoo (Department of Environemental Science and Engineering, Ewha Womans University) ;
  • Cho Kyung-Suk (Department of Environemental Science and Engineering, Ewha Womans University)
  • 이은희 (이화여자대학교 환경학과) ;
  • 김재수 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Published : 2005.09.01

Abstract

It was characterized the hexane biodegradation and mineralization using a hexane-degrading consortium, and analyzed its bacterial community structure by 16S rDNA PCR-DGGE (denaturing gradient gel electrophoresis). The specific growth rate (${\mu}_{max}$) of the hexane-degrading consortium was 0.2 $h^{-1}$ in mineral salt medium supplemented with hexane as a sole carbon source. The maximum degradation rate ($V_{max}$) and saturation constant ($K_{s}$) of hexane of the consortium are 460 ${\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ and 25.87 mM, respectively. In addition, this consortium could mineralize $49.1{\%}$ of $^{14}C$-hexane to $^{14}CO_2$, and $43.6{\%}$ of $^{14}C$-hexane) was used for the growth of biomass. The clones isolated from the DGGE bands were closely related to the bacteria which were capable of degrading pollutants such as oil, biphenyl, PCE, and waste gases. The hexane-degrading consortium obtained in this study can be applied for the biological treatment of hexane.

Hexane을 유일 탄소원으로 첨가한 무기염 배지에서 hexane 생분해 속도와 비성장속도를 구하였고, $^{14}C-hexane$을 이용하여 무기화(mineralization) 정도를 측정하였다. 또한, 16S rDNA PCR-DGGE 분석기법을 활용하여 consortium의 미생물 군집 특성을 조사하였다. Consortium CH의 최대 비성장속도 (${\mu}_{max}$)값은 $0.2\;h^{-1}$이고, 최대 hexane 분해속도 ($V_{max}$)와 포화상수 ($K_{s}$)는 각각 460 ${\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ 및 25.87mM 이었다. Consortium CH는 $^{14}C-hexane$의 약 $49.1\%$를 무기화하였고, $43.6{\%}$$^{14}C-hexane$는 biomass를 증가시키는데 사용하였다. DGGE band로부터 얻은 clone들은 유류, biphenyl, PCE 및 폐가스 등과 같은 오염물질 분해능을 가진 세균들과 유사성이 가장 높았다. 본 연구에서 얻은 hexane 생분해용 consortium은 향후 hexane 제거용 생물학적 시스템을 개발하는데 유용하게 활용될 수 있다.

Keywords

References

  1. Aeson, D. A., M. S. Boguski, O. J. Lipman, J. Ostell, B. F. Ouellet, B. A. Rapp, and D. L. Wheeler. 1999. GenBank. Nucl. Acids Res. 27: 12-17 https://doi.org/10.1093/nar/27.1.12
  2. An, Y. J., Y. H. Joo, J. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619
  3. Arriaga, S. and S. Revah. 2005. Improving hexane removal by enhancing fungal development in a microbial consortium biofilter. Biotechnol. Bioeng. 90: 107-115 https://doi.org/10.1002/bit.20424
  4. American conference of governmental industrial hygienists. 1999. TLVs and BEIs. Threshold limit values for chemical substances and physical agents. Biological exposure indices. Cincinnati, OH
  5. Cesario, M. T., H. H. Beeftink, and J. Tramper. 1992. Biological treatment of waste gases containing poorly soluble pollutants. pp. 135-140, Biotechniques for Air Pollution Abatement Odor Control Policies. Elsevier
  6. Gibson, D. T. 1984. Microbial Degradation of Organic Compounds. Marcel Dekker, INC
  7. Hohener P., C. Duwig, G. Pasteris, K. Kaufmann, N. Dakhel, and H. Harms. 2003. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. J. Contam. Hydrol. 66: 93-115 https://doi.org/10.1016/S0169-7722(03)00005-6
  8. Kastner, J. R., D. N. Thompson, and R. S. Cherry. 1999. Water-soluble polymer for increasing the biodegradation of sparingly soluble vapors. Enz. Microb. Technol. 24: 104-110 https://doi.org/10.1016/S0141-0229(98)00108-2
  9. Kisand, V., R. Cuadros, and J. Wikner. 2002. Phylogeny of culturable estuarine bacteria catabolizing riverine organic in the northern Baltic Sea. Appl. Environ. Microbiol. 68: 379-388 https://doi.org/10.1128/AEM.68.1.379-388.2002
  10. Lu, J., S. Sanchez, C. Hofacre, J. J. Maurer, B. G. Harmon, and M. D. Lee. 2003. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and Functional gene markers. Appl. Environ. Microbiol. 69: 901-908 https://doi.org/10.1128/AEM.69.2.901-908.2003
  11. Muyzer, G, E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  12. Neefs J. M., Y. Van de peer, L. Hendriks, and R. De Wachter. 1990. Compilation of small ribosomal subunit RNA sequences. Nucl. Acids Res. 18: 2237-2317 https://doi.org/10.1093/nar/18.suppl.2237
  13. Pruden, A., M. Suidan, A. D. Venosa, and G Wilson. J. 2001. Biodegradation of methyl tert-butyl ether under various substrate conditions. Environ. Sci. Technol. 35: 4235-4241 https://doi.org/10.1021/es010572z
  14. Showkey, M. D., S. R. Pillai, and G. E. Hill. 2003. Chemical warfare?: Effects of uropygial oil on feather-degrading bacteria. J. Avian. Biol. 34: 345-349 https://doi.org/10.1111/j.0908-8857.2003.03193.x
  15. Spigno, G., C. Pagella, M. D. Fumi, R. Molteni, and D. M. De Faveri. 2003. VOCs removal from waste gases: gas-phase bioreactor for the abatement of hexane by Aspergillus niger. Chem. Eng. Sci. 58: 739-746 https://doi.org/10.1016/S0009-2509(02)00603-6
  16. Tiago, I., A. P. Chung, and A. Verissimo. 2004. Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl. Environ. Microbiol. 70: 7378-7387 https://doi.org/10.1128/AEM.70.12.7378-7387.2004