Bacterial Community Analysis during Composting of Garbage using Denaturing Gradient Gel Electro-phoresis

Denaturing Gradient Gel Electrophoresis를 이용한 음식물 쓰레기 퇴비화 세균 군집 분석

  • Ryu Hee Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 류희욱 (숭실대학교 화학 환경공학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Published : 2005.09.01

Abstract

The microbial community during composting of gargage was analyzed using 16S rDNA PCR - DGCE (denaturing gradient gel electrophoresis). Pseudomonas spp. was found throughout the process, and thermophilic Bacillus spp. was dominated at the thermophilic stage. Six thermophilic bacteria were isolated and identified as B. caldoxylolyticus, B. thermoalkalophilus, and B. thermodenitrificans.

Keywords

References

  1. An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619
  2. Bae, Y. J., H. Kaneko, and F. Fujita, 1993. Profile of microbial numbers and growth activity in composting process. J. KOWREC 1: 59-68
  3. Blanc, M., L. Marilley, T. Bela, and M. Aragno. 1999. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol. Ecol. 28: 141-149 https://doi.org/10.1111/j.1574-6941.1999.tb00569.x
  4. Bowman, J.P., S.A. McCammon, M.V. Brown, D.S. Nichols, and T.A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in antarctic sea ice. Appl. Environ. Micorbiol. 63: 3068-3078
  5. Coates, J. D., K. A. Cole, R. Chakraborty, S. M. O'Connor, and L. A. Achenbach. 2002. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration, Appl. Environ. Microbiol. 68: 2445-2452 https://doi.org/10.1128/AEM.68.5.2445-2452.2002
  6. Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35: 207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  7. Eilers, H., J. Pernthaler, F. O. Glockner, and R. Amann. 2000. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66: 3044-3051 https://doi.org/10.1128/AEM.66.7.3044-3051.2000
  8. Finstein, M. S. and M. L. Morris. 1975. Microbiology of municipal solid waste composting. Adv. Appl. Microbial. 19: 113-151 https://doi.org/10.1016/S0065-2164(08)70427-1
  9. Franke-Whittle, I. H., S.H . Klammer, and H. Insam. 2005. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods 62: 37-56 https://doi.org/10.1016/j.mimet.2005.01.008
  10. Gajdos, R. 1992. The use of organic waste materials as organic fertilizers recycling of plant nutrients. Acta Hortic. 302: 325-331
  11. Guidi, G, A. Pera, M. Giovannetti, G. Poggio, and M. Bertoldi. 1988. Variations of soil structure and microbial population in a compost amended soil. Plant Soil 106: 113-119 https://doi.org/10.1007/BF02371202
  12. Herrmann R. F. and J. F. Shann. 1997. Microbial community changes during the composting of municipal solid waste. Microb. Ecol. 33: 78-85 https://doi.org/10.1007/s002489900010
  13. Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89: 768-777 https://doi.org/10.1046/j.1365-2672.2000.01177.x
  14. James, S. A, J. Cal, I. N. Roberts, and M. D. Collins. 1997. A phylogenetic analysis of the genus Saccharomyces based on 18S rRNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov. Int. J. Syst. Bacteriol. 47: 453-460 https://doi.org/10.1099/00207713-47-2-453
  15. Juteau, P., R. Larocque, D. Rho, and A. LeDuy. 1999. Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl. Microbiol. Biotechnol. 52: 863-868 https://doi.org/10.1007/s002530051604
  16. Klamer, M. and E. Baath. 1998. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbial. Ecol. 27: 9-20 https://doi.org/10.1111/j.1574-6941.1998.tb00521.x
  17. Kowalchuk, G. A., Z. S. Naoumenko, P. J. L. Derikx, A. Felske, J. R. Stephen, and I. A. Arkhipchenko. 1999. Molecular analysis of ammonia-oxidizing bacteria of the Lsubdivision of the class Proteobacteria in compost and composted materials. Appl. Environ. Microbiol. 65: 396-403
  18. Loeffler, J., H. Hebart, S. Magga, D. Schmidt, L. Klingspor, J. Tollemar, U. Schumacher, and H. Einsele. 2000. Identification of rare Candida species and other yeasts by polymerase chain reaction and slot blot hybridization. Diagn. Microbiol. Infect. Dis. 38: 207-212 https://doi.org/10.1016/S0732-8893(00)00201-7
  19. Nakasaki, K., H. Yaguchi, Y. Sasaki, and H. Kubata. 1985. Effects of C/N ratio on thermophilic composting of garbage. J. Ferment. Bioeng. 63: 43-45
  20. Nakasaki, K., M. Sasaki, M. Shoda, and H. Kubota. 1985. Changes in microbial numbers during thermophilic composting of sewage sludge with reference to C02 evolution rate. Appl. Environ. Microbiol. 53: 1118-1124
  21. Nakasaki, K., M. Shoda, and H. Kubota. 1986. Effect of bulking agent on the reaction rate of thermophilic sewage sludge composting. J. Ferment. Bioeng. 64: 539-544
  22. Nakasaki, K., Y. Hakano, T. Akiyama, M. Shoda, and H. Kubota. 1987. Oxygen diffusion and microbial activity in the composting of dehydrated sewage sludge cakes. J. Ferment. Bioeng. 65: 43-48
  23. Pedro, M.S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi, Y. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J. Biosci. Bioeng. 91: 159-165 https://doi.org/10.1016/S1389-1723(01)80059-1
  24. Sakala, R. M., Y. Kato, H. Hayashidani, M. Murakami, C. Kaneuchi, and M. Ogawa. 2002. Lactobacillus fuchuensis sp. nov., isolated from vacuum-packaged refrigerated beef. Int. J. Syst. Evol. Microbiol. 52(Pt 4): 1151-1154 https://doi.org/10.1099/ijs.0.02119-0
  25. Schloss, P. D., A. G. Hay, D.B. Wilson, and L. P. Walker. 2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 46: 1-9 https://doi.org/10.1016/S0168-6496(03)00153-3
  26. Stougaard, P., F. Jorgensen, M. G. Johnsen, and O. C. Hansen. 2002. Microbial diversity in ikaite tufa columns; an alknae, cold ecological niche in Greenland. Environ. Microbiol. 4: 487-493 https://doi.org/10.1046/j.1462-2920.2002.00327.x
  27. Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, A. Katayama. 2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Proc. Biochem. 39: 1999-2006 https://doi.org/10.1016/j.procbio.2003.09.029
  28. Wiedmann, M., D. Weilmeier, S.S. Dineen, R. Ralyea, and K. J. Boor. 2000. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl. Environ. Microbiol. 66: 2085-2095 https://doi.org/10.1128/AEM.66.5.2085-2095.2000