DOI QR코드

DOI QR Code

Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs

LSGM계 고체산화물 연료전지의 계면안정성을 위한 완층층의 도입

  • Kim, Kwang-Nyeon (Materials Division, Korea Institute of Science and Technology, School of Advanced Materials Engineering, Yonsei University) ;
  • Moon, Jooho (School of Advanced Materials Engineering, Yonsei University) ;
  • Son, Ji-Won (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Joosun (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (Materials Division, Korea Institute of Science and Technology)
  • 김광년 (한국과학기술연구원 재료연구부, 연세대학교 세라믹공학과) ;
  • 문주호 (연세대학교 세라믹공학과) ;
  • 손지원 (한국과학기술연구원 재료연구부) ;
  • 김주선 (한국과학기술연구원 재료연구부) ;
  • 이해원 (한국과학기술연구원 재료연구부) ;
  • 이종호 (한국과학기술연구원 재료연구부) ;
  • 김병국 (한국과학기술연구원 재료연구부)
  • Published : 2005.09.01

Abstract

In order to find a proper buffering material which can prohibit an unwanted interfacial reaction between anode and electrolyte of LSGM-based SOFC, we examined a gadolinium doped ceria and scandium doped zirconia as a candidate. For this examination, we investigated the microstructural and phase stability of the interface under different buffering layer conditions. According to the investigation, ceria based material induced a serious La diffusion out of the LSGM electrolyte resulted in the formation of very resistive $LaSrGa_3O_7$ phase at the interface. On the other hand zirconia based material was directly reacted with LSGM electrolyte and thus produced very resistive reaction products such as $La_2Zr_2O_7,\;Sr_2ZrO_4,\;LaSrGaO_4\;and\;LaSrGa_3O_7$. From this study we found that an improper buffering material induced the higher internal cell resistance rather than an interfacial stability.

Keywords

References

  1. N. Q. Minh, 'High-Temperature Fuel Cells. Part II : The Solid Oxide Fuel Cell,' Chemtech., 21 120-26 (1991)
  2. N. Q. Minh, 'Ceramic Fuel Cell,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. T. Hibino, 'A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixture,' Science, 288 203 1-33 (2000) https://doi.org/10.1126/science.288.5473.2031
  4. S. M. Haile, 'Fuel Cell Materials and Components,' Jon & Wiley Sons, New York, NY, pp. 60-107 (2000)
  5. B. C. Steele, 'Ceramic Ion Conducting Membranes,' Current Opinion in Solid State & Muter. Sci., 1 [5] 684-91 (1996). https://doi.org/10.1016/S1359-0286(96)80052-0
  6. F. W. Poulsen and N. van der Puil, 'Phase Relations and Conductivity of Sr-and La-Zirconates,' Solid State Ionics, 53-56 777-83 (1992) https://doi.org/10.1016/0167-2738(92)90254-M
  7. M. Hrovat, A. Ahmad-Khanlou, Z. Samardzija, and Janez Hole, 'Interactions between Lanthanum Gallate Based Solid Electrolyte and Ceria,' Muter: Res. Bull., 34 2027-34 (1 999) https://doi.org/10.1016/S0025-5408(99)00220-2
  8. N. Maffei, and G de Silveira, 'Interfacial Layers in Tape Cast Anode-Supported Doped Lanthanum Gallate SOFC Elements,' Solid State Ionics, 159 209-16 (2003) https://doi.org/10.1016/S0167-2738(02)00695-1
  9. A. Naoumidis, A. Ahmad-Khanlou, Z. Samardzija, and D. Kolar, 'Chemical Interaction and Diffusion on Interface Cathode/Electrolyte of SOFC,' J. Anal. Chem., 365 277-81 (1999) https://doi.org/10.1007/s002160051488
  10. K. Huang, J. H. Wan, and J. B. Goodenough, 'Increasing Power Density of LSGM-Based Solid Oxide Fuel Cell Using New Anode Materials,' J. Electrochem. Soc., 148 [7] 788-94 (2001) https://doi.org/10.1149/1.1378289
  11. P. Huang, A. Horky, and A. Petric, 'Interfacial Reaction between Nickel Oxide and Lanthanum Gallate During Sintering and Its Effect on Conductivity,' J. Am. Ceram. Soc., 82 [9] 2402-06 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02096.x
  12. S. Elangovan, S. Balagopal, D. Larsen, M. Timper, J. Pike, and B. Heck, 'Lantanum Gallate Electrolyte for Intermediate Temperature Operation,' Electrochemical Society Proceedings, 7,299-303 (2003)
  13. K. Huang, M. Feng, and J. B. Goodenough, 'Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr-and Mg-Doped LaGa$O_3$,' J. Electrochem. Soc., 144 3620-24 (1997) https://doi.org/10.1149/1.1838058
  14. K. Huang, R. Tichy, and J. B. Goodenough, 'Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped $LaGaO_3$: III, Performance Tests of Single Ceramic Fuel Cells,' J. Am. Ceram. Soc., 81 [10] 2581-85 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02664.x
  15. X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki, and K. Miura, 'Interface Reactions in the NiO-SDC-LSGM System,' Solid State Ionics, 133 153- 60 (2000) https://doi.org/10.1016/S0167-2738(00)00744-X
  16. K. N. Kim, J. H. Moon, J. W. Son, J. S. Kim, H. W. Lee, J. H. Lee, and B. K. Kim, 'Interfacial Stability between Anode and Electrolyte of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [7] 509-15 (2005) https://doi.org/10.4191/KCERS.2005.42.7.509
  17. H. Y. Lee, and S. M. Oh, 'Origin of Cathodic Degradation and New Phase Formation at the $La_{0.9}Sr_{0.1}MnO_3/YSZ$ Interface,' Solid State Ionics, 90 133-40 (1996) https://doi.org/10.1016/S0167-2738(96)00408-0