DOI QR코드

DOI QR Code

MICROLEAKAGE OF THE CLASS V CAVITY ACCORDING TO RESTORATION SITE AND CAVITY SIZE USING SEM AND THREE-DIMENSIONAL RECONSTRUCTION TECHNIQUES

SEM과 3차원 재구성법을 이용한 수복면의 위치와 와동 크기에 따른 미세누출도 분석

  • Yang, In-Seo (Department of Conservative Dentistry, School of Dentistry, Dankook University) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, School of Dentistry, Dankook University)
  • 양인서 (단국대학교 치과대학 치과보존학교실) ;
  • 신동훈 (단국대학교 치과대학 치과보존학교실)
  • Published : 2005.03.01

Abstract

This study was done to evaluate whether there were any differences in microleakage of class V composite restorations according to restoration site and cavity size. Total sixty-four restorations were made in molar teeth using Esthet-X. Small ($2\;{\times}\;2\;{\times}\;1.5\;mm$) and large ($4{\times}2{\times}1.5\;mm$) restorations were made at the buccal/lingual surface and the proximal surface each. After 1,000 times of thermocycling ($5^{\circ}\;-\;55^{\circ}C$), resin replica was made and the percentage of marginal gap to the whole periphery of the restoration was estimated from SEM evaluation. Thermocycled tooth was dye penetrated with $50\%$ silver nitrate solution. After imbedding in an auto-curing resin, it was serially ground with a thickness of 0.25 mm. Volumetric microleakage was estimated after reconstructing three dimensionally. Two-way ANOVA and independent T-test for dye volume, Mann-Whitney U test for the percentage of marginal gap, Spearman's rho test for the relationship between two techniques were used, The results were as follows : 1. The site and size of the restoration affected on the microleakage of restoration. Namely, much more leakage was seen in the proximal and the large restorations rather than the buccal/lingual and the small restorations. 2. Close relationship was found between two techniques (Correlation coefficient = 0.614/ P = 0.000). Within the limits of this study, it was noted that proximal and the large restorations leaked more than buccal/lingual and the small restorations. Therefore, it should be strictly recommended large exposure of margins should be avoided by reducing unnecessary tooth reduction.

본 연구에서는 수복면의 위치와 와동의 크기에 따른 미세누출도의 차이를 확인하기 위해 3차원 재구성법에 의한 색소침투량과 주사전자현미경 검경을 통한 변연틈새의 비율을 측정하였다. 32개의 건전한 대구치의 협/설면과 인접면에 각기 $2\;{\times}\;2\;{\times}\;1.5\;mm$의 작은 와동과 $4\;{\times}\;2\;{\times}\;1.5\;mm$크기의 큰 5급 와동을 형성 한 다음, 자가부식형 접착시스템으로 치면 처리하고 혼합형 복합레진인 Esthet X로 단일 충전하였다. 5도와 55도 사이에서 1000회의 열순환을 시킨 다음, 레진 복제물을 제작하고 SEM 검경을 통해 전체 변연길이에 대한 변연틈새의 비율을 측정하였다. 또한 열순환된 치아에 $50\%$ 질산은 용액으로 색소를 침투시킨 후 자가중합형 레진에 포매하여 0.25 mm두께의 간격으로 연속적으로 갈아내면서 각각의 단면상을 채득하였다. 각 단면상을 3차원으로 재구성하여 미세누출도를 정량적으로 평가하였다. 3차원 색소 침투량의 유의성 검정에는 Two-way ANOVA와 independent T-test를, 변연틈새의 비율에는 Mann-Whitney U test를 사용하였으며 , 두 방법 사이의 Spearman's rho test로 평가하여 다음과 같은 결과를 얻었다. 1 미세누출도는 수복면의 위치와 와동의 크기에 의해 영향을 받았다. 즉 협/설면과 작은 와동보다는 인접면과 큰 와동에서 더 많은 미세누출을 보였다. 2. 두 방법 사이에는 높은 상관 관계를 보였다 (상관계수 = 0.614/P= 0.000). 이상의 연구 결과로 볼 때, 협/설면과 작은 와동의 수복물보다는 인접면과 큰 와동의 수복물에서 더 많은 미세누출을 보였으므로, 불필요한 치질 삭제를 줄임으로써 변연부의 노출이 커지는 것을 막아야 할 것이다.n-St/SS 군에서는 비표준화 medium 규격 master cone과 스테인레스 스틸 spreader를, 그리고 Non-St/NT 군에서는 비표준화 medium 크기 master cone과 니켈-티타늄 finger spreader를 각각 사용하였다. 충전된 근관은 $37^{\circ}C$, 상대습도 $100\%$하에서 24시간 보관한 후, 치근단 1, 3및 5 mm수준에서 횡절단하여 입체현미경 하에서 관찰하고 컴퓨터에 저장한 다음, $Auto^{(R)}$CAD 2000 프로그램을 이용하여, 형성된 근관 및 gutta-percha 충전물의 외형을 추적하여 근관내 gutta-percha 면적비를 계산하였다. Gutta-percha 면적비의 결과치는 two-way ANOVA를, 그리고 accessory cone 수는 one-way ANOVA 및 Duncan's multiple range test를 이용하여 통계 분석하여 다음과 같은 결과를 얻었다. 스테인레스 스틸 finger spreader를 사용한 경우 및 니켈-티타늄 finger spreader를 사용한 경우 공히, 모든 치근단 수준에서 비표준화 medium 크기 master cone 사용군이 ISO 표준화 규격의 master cone 사용군에 비해 유의하게 높은 gutta-percha 면적비를 나타내었다 (p < 0.01). 비표준화 medium크기 master cone 사용군에서는 표준화 규격의 master cone 사용군에 비해 유의하게 적은 수의 accessory cone이 사용되었다 (p < 0.01). 대학생간에는 유의한 차이(p<0.05)가 인정되었다. 응답자의 체형은 ${\ulcorner}$적당하다${\lrcorner}$고 응답한 경우가 가장 많이 이러한 음식을 즐겨 먹었으며(49.5%), 그

Keywords

References

  1. Eick JD, Welch FH. Polymerization shrinkage of posterior composite resins and its possible influence on post-operative sensitivity. Quint Int 17(2):103-111, 1986
  2. Tjan AH, Bergh BH, Lidner C. Effect of various incremental techniques on the marginal adaptation of Class II composite resin restorations. J Prosth Dent 67(1):62-66, 1992 https://doi.org/10.1016/0022-3913(92)90051-B
  3. Lutz F, Krejci, Oldenburg TR. Elimination of polymerization stresses at the margins of posterior composite resin restorations: A new restorative technique. Quint Int 17(12):777-784, 1986
  4. Uno S, Asmussen E. Marginal adaptation of a restorative resin polymerized at reduced rate. Scand J of Dent Res 99:440-444, 1991
  5. Burgess JO, DeGoes M, Walker R, Ripps AH. An evaluation of four light-curing units comparing soft and hard curing. Pract Perio Aesthet Dent 11(1):125-133, 1999
  6. Aboushala A, Kugel G, Hufley E. Class II composite resin restorations using glass-ionomer liners: Microleakage studies. J Clinic Pediatr Dent 21(1):67-71, 1996
  7. Oilo G. Biodegradation of dental composites/glassionomer cements. Advan Dent Res 6:50-54, 1992 https://doi.org/10.1177/08959374920060011701
  8. Fortin D, Swift EJ Jr, Denehy GE, Reinhardt JW. Bond strength and microleakage of current dentine adhesives. Dent Mater 10(4):253-258, 1994 https://doi.org/10.1016/0109-5641(94)90070-1
  9. Rigsby DF, Retief DH, Bidez MW, Russell CM. Effect of axial load and temperature cycling on microleakage of resin restorations. Am J Dent 5(3):155-159, 1992
  10. Donly KJ, Ellis RK. Glass inserts. A new dimension in restorative dentistry. Am J Dent 2(1):21-24, 1989
  11. Feilzer A, de Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66:1636-1639, 1987 https://doi.org/10.1177/00220345870660110601
  12. Hobson RS, Rugg-Gunn AJ, Booth TA. Acid-etch patterns on the buccal surface of human permanent teeth. Arch Ora Biol 47(5):407-412, 2002 https://doi.org/10.1016/S0003-9969(02)00008-0
  13. Sturdevant JR, Pashley DH. Regional dentin permeability of Class I and II cavity preparations. J Dent Res 68:203 (abstract No. 173), 1989
  14. Saboia VP, Pimenta LA, Ambrosano GM. Effect of collagen removal on microleakage of resin composite restorations. Oper Dent 27(1):38-43, 2002
  15. Adamo HL, Buruiana R, Schertzer L, Boylan RJ. A comparison of MTA, Super-EBA, composite and amalgam as root end filling materials using a bacterial microleakage model. Int Endad J 32:197-203, 1999 https://doi.org/10.1046/j.1365-2591.1999.00214.x
  16. Hembree JH, Andrew JT. Microleakage of several class V anterior restorative materials: a laboratory study. J Am Dent Assoc 97(2):179-183, 1978 https://doi.org/10.14219/jada.archive.1978.0252
  17. Manhart J, Chen HY, Mehl A, Weber K, Hickel R. Marginal quality and microleakage of adhesive class V restorations. J Dent 29(2):123-130, 2001 https://doi.org/10.1016/S0300-5712(00)00066-X
  18. Youngs on CC, Jones JC, Fox K, Smith IS, Wood DJ, Gale M. A fluid filtration and clearing technique to assess microleakage associated with three dentine bonding systems. J Dent 27(3):223-233, 1999 https://doi.org/10.1016/S0300-5712(98)00048-7
  19. Von Fraunhofer JA, Adachi EI, Barnes DM, Romberg E. The effect of tooth preparation on microleakage behavior. Oper Dent 25(6):526-533, 2000
  20. Ha SY, Shin DH. New quantitative measuring technique for microleakage of the restored tooth through 3D reconstruction. Korean Acad Conserv Dent 29(4):413-422, 2004 https://doi.org/10.5395/JKACD.2004.29.5.413
  21. Estafan D, Pines MS, Erakin C, Fuerst PF. Microleakage of Class V restorations using two different compomer systems: an in vitro study. J Clin Dent 10(4):124-126, 1999
  22. Hatibovic-Kofman S, Wright GZ, Braverman I. Microleakage of sealants after conventional, bur, and air-abrasion preparation of pits and fissures. Pediatr Dent 20(3):173-176, 1998
  23. Grande RH, Ballester R, Singer Jda M, Santos JF. Microleakage of a universal adhesive used as a fissure sealant. Am J Dent 11(3):109-113, 1998
  24. Mixon JM, Eick JD, Chappell RP, Tira DE, Moore DL. Comparison of two-surface and multi-surface scoring methodologies for in vitro microleakage studies. Dent Mater 7(3):191-196, 1991 https://doi.org/10.1016/0109-5641(91)90042-W
  25. Shin DH. Dentinal microleakage study on the light curable restorative glass ionomer cement. Korean Acad Conserv Dent 20(2):832-838, 1995
  26. Arnold WH, Gaengler P, Kalkutschke L. Three-dimensional reconstruction of approximal subsurface caries lesions in deciduous molars. Clin Oral Investig 2(4):174-179, 1998 https://doi.org/10.1007/s007840050066
  27. Mikrogeorgis G, Lyroudia KL, Nikopoulos N, Pitas I, Molyvdas I, Lambrianidis TH. 3D computer-aided reconstruction of six teeth with morphological abnormalities. Int Endod J 32(2):88-93, 1999 https://doi.org/10.1046/j.1365-2591.1999.00189.x
  28. Jacobs R, Adriansens A, Verstreken K, Suetens P, van Steenberghe D. Predictability of a three-dimensional planning system for oral implant surgery. Dentomaxillofac Radiol 28(2):105-111, 1999 https://doi.org/10.1038/sj.dmfr.4600419
  29. Jung EH, Shin DH. Morphological analysis of C-shaped root using 3D reconstruction. Korean Acad Conserv Dent 27(4):421-431, 2002 https://doi.org/10.5395/JKACD.2002.27.4.421
  30. Veis A, Lambrianides T, Nicolaou A. Area-metric analysis of dye leakage for evaluation of sealing ability of root canal obturation techniques. Endod Dent Traumatol 12(5):222-226, 1996 https://doi.org/10.1111/j.1600-9657.1996.tb00519.x
  31. Gale MS, Darvell BW, Cheung GS. Three-dimensional reconstruction of microleakage pattern using a sequential grinding technique. J Dent 22(6):370-375, 1994 https://doi.org/10.1016/0300-5712(94)90091-4
  32. Jason CD, William JD, Louis JT. Shear bond strength of orthodontic brackets bonded with a modified 1-step etchant-and-primer technique. American Orthodont Dentofac Orthoped 124(4):410-413, 2003 https://doi.org/10.1016/S0889-5406(03)00404-9
  33. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: The influence of stress development versus stress relief. Oper Dent 21:17-24, 1996
  34. Asmussen E, Munksgaard EC. Bonding of restorative resins to dentine: Status of dentin adhesives and impact on cavity design and filling techniques. Int Dent J 38:97-104, 1988
  35. Marshall GW Jr, Chang YJ, Gansky SA, Marshall SJ. Demineralization of caries-affected transparent dentin by citric acid: an atomic force microscopy study. Dent Mater 17(1):45-52, 2001 https://doi.org/10.1016/S0109-5641(00)00056-7
  36. Saunders WP, Saunders EM. Microleakage of bonding agents with wet and dry bonding techniques. Am J Dent 9(1):34-36, 1996
  37. Walls AW, Lee J, McCabe JF. The bonding of composite resin to moist enamel. Br Dent 191(3):148-150, 2001 https://doi.org/10.1038/sj.bdj.4801124a
  38. Youngson CC, Jones JC, Manogue M, Smith IS. In vitro dentinal penetration by tracers used in microleakage studies. Int Endod J 31(2):90-99, 1998 https://doi.org/10.1046/j.1365-2591.1998.00132.x
  39. Hakimeh S, Vaidyanathan J, Houpt ML, Vaidyanathan TK, Yon Hagen S. Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. J Prosthet Dent 83(2):194-203, 2000 https://doi.org/10.1016/S0022-3913(00)80012-8
  40. Crim GA. Marginal leakage of visible light-cured glass ionomer restorative materials. J Prosthet Dent 69:561-563, 1993 https://doi.org/10.1016/0022-3913(93)90281-R
  41. Hilton TJ, Ferracane JL. Cavity preparation factors and microleakage of Class II composite restorations filled at intraoral temperatures. Am J Dent 11:113-130, 1999
  42. Santini A, Mitchell S. Microleakage of composite restorations bonded with three new dentin bonding agents. J Esthet Dent 10(6):296-304, 1998 https://doi.org/10.1111/j.1708-8240.1998.tb00507.x